

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS

NATIONAL CONFERENCE Hotel Monteleone

NEW ORLEANS

2022 ASIC National Conference

Welcome to New Orleans!

Stacy Gardner, ASIC President Bob Scott, Conference Chairman

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

Energy Load Shifting in the Water Sector

Robert Good, Engineering Manager Center for Water-Energy Efficiency,

University of California Davis

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

- 2022 -NATIONAL CONFERENCE

Our Mission

ZUCDAVIS

Advance water management solutions for the integrated savings of water and energy resources.

My Research Topics

Center for Water-Energy Efficiency

Focused on developing new computer models and analytics to support the water and energy sector through real-time calculations or visualizations.

- 2022 -NATIONAL CONFERENCE

AASIC

In pursuit of increased utilization of wind and solar power in California, we are challenged with using it when available.

Electricity that goes unused is often "curtailed" outside of California for cheap or for a price.

- 2022 -NATIONAL CONFERENCE

Energy Curtailed Outside of California in 2020, by Month

Average Hourly Emission Intensity to Supply Electricity

Figure From: Rupiper, A., Good, R., Miller, G., & Loge, F. (2022). Mitigating renewables curtailment and carbon emissions in California through water sector demand flexibility. In Review at Applied Energy

- 2022 -NATIONAL CONFERENCE

Curtailment and solar generation have a direct – and large – impact on operating costs

Figure From: Good, R. (2018). "Reducing Electricity Grid Imbalances through Energy Demand Management of Water Delivery Infrastructure." Master's Thesis. March 9th 2018, University of California, Davis.

The U.S. Department of Energy predicts:

"... no [new] hydropower development will take place at previously undeveloped sites without innovative – even transformational – advances in technologies and designs to reduce costs and meet environmental performance objectives."

Yet, even with rapid innovation:

"Hydroelectric generation accounts for roughly 6% of United States electricity consumption, [or] ... 80 Gigawatt (GW) of cumulative installed capacity ... [and] approximately 16 GW of hydropower growth at new stream-reaches could be possible with the development of technology solutions that balance efficiency, economics, and environmental sustainability."

- Department of Energy Funding Opportunity Announcement DE-FOA-0001836

- 2022 -NATIONAL CONFERENCE

UC Davis sought to answer if the Water Sector could assist without significant investment in new equipment:

Could the water sector shift when they consume energy with their existing assets?

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector that could load shift?
- Do changes in the Water Sector impact the Energy Sector?
- What are some examples of Energy Load Shifting?

- 2022 -NATIONAL CONFERENCE

The Water Sector consumes nearly 20% of all electricity in California.

- 2022 -NATIONAL CONFERENCE

Water Supply (7.5%)

Figure From: Spang, E., Holguin, A., Loge, F. (2018) The estimated impact of California's urban water conservation mandate on electricity consumption and greenhouse gas emissions. Environ. Res. Lett. 13 014016 Figure From: Wilkinson, R., Wolff, G., Kost, W., Shwom, R. (2007). An Analysis of the Energy Intensity in California: Providing a Basis for Quantification of Energy Savings from Water System Improvements. ACEEE Summer Study on Energy Efficiency in Buildings

- *2022* -National conference

Water conservation mandate during previous CA drought: Was there electricity savings from these water savings?

Figure From: Spang, E., Holguin, A., Loge, F. (2018) The estimated impact of California's urban water conservation mandate on electricity consumption and greenhouse gas emissions. Environ. Res. Lett. 13 014016

8,500

35,200

18.800

- 2022 -NATIONAL CONFERENCE

More electricity savings were achieved than with all major energy utility programs combined

Figure From: Spang, E., Holguin, A., Loge, F. (2018) The estimated impact of California's urban water conservation mandate on electricity consumption and greenhouse gas emissions. Environ. Res. Lett. 13 014016

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector?
 - How large is the end-use component?
 - How large is water pumping?
- Do changes in the Water Sector impact the Energy Sector?
- What are some examples of Energy Load Shifting?

- 2022 -NATIONAL CONFERENCE

Efficiency-Lift Method:

$$V = \frac{E * \eta}{27.2285 * H}$$

where: V = volume of groundwater pumped (ha-m); (1 ha-m = 8.107 ac-ft) E = pump energy consumption (kWh); η = overall pumping plant efficiency (%), H = total dynamic head (m)

Groundwater accounts for 40% of California's water supply – and 100% of irrigation water in some areas. Could we accurately estimate their pumping activities and energy use?

- 2022 -NATIONAL CONFERENCE

Region Overview

Total Dynamic Head Approaches

At the Angiola Water District in California, we calibrated and tested the method using retrieved pump test reports and actual energy bills.

Figure From: Martindill, J., Good, R., Loge, F. (2020). Estimating Agricultural Groundwater Withdrawals with Energy Data. Journal of Water Resources and Management, Vol. 147, Issue 5 (May 2021)

- 2022 -NATIONAL CONFERENCE

We identified that with unique pump test reports for the region or individual pumps, we could achieve high accuracy. Even without, the "calculated" approach performed well.

Figure From: Martindill, J., Good, R., Loge, F. (2020). Estimating Agricultural Groundwater Withdrawals with Energy Data. Journal of Water Resources and Management, Vol. 147, Issue 5 (May 2021)

- 2022 -NATIONAL CONFERENCE

In the end we developed a method that performs well at equating energy use to water flows. Currently performs best with regional pump test reports, though not required to use the method.

Figure From: Martindill, J., Good, R., Loge, F. (2020). Estimating Agricultural Groundwater Withdrawals with Energy Data. Journal of Water Resources and Management, Vol. 147, Issue 5 (May 2021)

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector?
 - How large is the end-use component?
 - How large is water pumping?
- Do changes in the Water Sector impact the Energy Sector?
- What are some examples of Energy Load Shifting?

- 2022 -NATIONAL CONFERENCE

There are few estimates for the energy used for water distribution at utilities in California. We chose to take a mass-balance modeling approach.

Figure From: Rupiper, A., Good, R., Miller, G., & Loge, F. (2022). Mitigating renewables curtailment and carbon emissions in California through water sector demand flexibility. In Review at Applied Energy

- 2022 -NATIONAL CONFERENCE

The approach solves for a unique hour-by-hour pumping solution for every water system – taking their specific water sales, storage, pump capacity, and fire requirements into account.

- 2022 -NATIONAL CONFERENCE

∆ ASIC

- 2022 -NATIONAL CONFERENCE

Table: Annual total energy consumed, shifted, emissions, and emission intensity under eight different optimization scenarios.

Scenario	Annual Total Energy Consumed	Annual Net Load Shifted	Annual Total GHG Emissions	GHG Emission Intensity
(Consumption / Demand)	(MWh)1	(MWh)²	(mTCO2e)	(mTCO2e/MWh)
1 (Flat/None)	3,273,163	0.0	508,045	0.1552
2 (Flat/Flat)	3,214,285	-16,660	501,495	0.1560
3 (Low/High)	3,228,971	-37,354	509,544	0.1578
4 (TOU/None)	3,189,280	740,900	451,651	0.1416
5 (Flat/TOU)	3,202,021	30,195	499,092	0.1559
6 (TOU/Flat)	3,183,231	-80,584	502,773	0.1579
7 (RTP/None)	2,989,939	578,158	454,042	0.1518
8 (Emissions/None)	3,134,091	535,682	466,440	0.1488

1. Total energy consumption under all scenarios should be identical given identical water demands. Small variations exist because each optimization scenario may have resulted in slightly different final water storage levels each month resulting in slightly more or less total energy being demanded for pumping. The total energy consumed for pumping under all scenarios equates to approximately **1.2% of the total energy consumed in CA in 2020.**

2. Net load shifted is relative to scenario 1 as the baseline considering the energy consumed between the hours of 9am and 4pm. Negative values indicate that a greater load was shifted into the load shift window than out.

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector?
 - How large is the end-use component?
 - How large is water pumping?

Do changes in the Water Sector impact the Energy Sector?

- What are some practical examples of Energy Load Shifting?
 - Wholesale, Proxy Demand Response Program at a Treatment Plant
 - Real-time Decision Support at a Water Distribution System
 - Reducing Peak Irrigation Customer Water Demand

- 2022 -NATIONAL CONFERENCE

We partnered with a Wastewater Treatment Plant to pilot shifting their energy loads based on price incentives from a wholesale demand response program.

Photos by Robert Good. Related Research: Musabandesu, E., Loge, F. (2021). Load shifting at wastewater treatment plants: A case study for participating as an energy demand resource. Journal of Cleaner Production, Volume 282, 2021, 123354

∆ ASIC

- 2022 -NATIONAL CONFERENCE

For this pilot, we took advantage of batteries as well as existing flow-equalization basins to ramp up or down energy loads on a price schedule.

Figure From: Musabandesu, E., Loge, F. (2021). Load shifting at wastewater treatment plants: A case study for participating as an energy demand resource. Journal of Cleaner Production, Volume 282, 2021, 123354

- 2022 -NATIONAL CONFERENCE

Flow Equalization Basins

Batteries

Combined Heat & Power

1-2 MWh Shift Capability

O.5 MWh Shift Capability

1 MWh Shift Capability

For this pilot, we took advantage of batteries as well as existing flow-equalization basins to ramp up or down energy loads on a price schedule.

Photos by Robert Good. Related Research: Musabandesu, E., Loge, F. (2021). Load shifting at wastewater treatment plants: A case study for participating as an energy demand resource. Journal of Cleaner Production, Volume 282, 2021, 123354

- 2022 -NATIONAL CONFERENCE

We learned that short-term load-shifting at the facility was difficult. It required precise scheduling of complex equipment, without adjusting too soon or too late.

Figure From: Musabandesu, E., Loge, F. (2021). Load shifting at wastewater treatment plants: A case study for participating as an energy demand resource. Journal of Cleaner Production, Volume 282, 2021, 123354

- 2022 -NATIONAL CONFERENCE

(b) Scenario 2: FEB to Reduce Energy by 0.5 MW 2019-04-16 2019-06-19 2019-06-20 2019-04-03 2019-04-09 2019-04-12 6 1.0 Energy (MWh) Days 4 -0.5 # 2 --0.5 12 18 19 20 20 12 13 14 11 12 13 11 13 13 14 15 21 18 19 21 Scenario Hour (c) Scenario 3: Battery to Reduce Energy by 0.2 MW 2019-03-29 2019-04-04 2019-04-10 2019-04-08 2019-04-11 2019-04-15 0.5 Energy (MWh) # Days 4 -0.0 2 --1.0 15 13 10 13 14 12 13 14 13 14 15 12 14 10 11 12 8 9 Hour Scenario Target Bid Achieved FALSE Daily Target Met TRUE No Partially Yes

After 18 load-shifting events, only 3 were successfully accepted into the wholesale market.

We estimated that with additional practice, this facility could generate up to \$68,344 annually through this wholesale market.

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector?
 - How large is the end-use component?
 - How large is water pumping?
- Do changes in the Water Sector impact the Energy Sector?
- What are some practical examples of Energy Load Shifting?
 - Wholesale, Proxy Demand Response Program at a Treatment Plant
 - Real-time Decision Support at a Water Distribution System
 - Reducing Peak Irrigation Customer Water Demand

- 2022 -NATIONAL CONFERENCE

Water systems are complex systems that require balancing mass, momentum, and energy to accurately estimate how the system will react to changes.

This is often solved with hydraulic models.

Figure From: D. Linz, B. Ahmadi, R. Good, E. Musabandesu and F. Loge, "Multi-Threaded Simulation Optimization Platform for Reducing Energy Use in Large-Scale Water Distribution Networks with High Dimensions," 2020 Winter Simulation Conference (WSC), 2020, pp. 704-714, doi: 10.1109/WSC48552.2020.9383920.

- 2022 -NATIONAL CONFERENCE

Even after these models are built, utilizing them to make operational decisions has proven difficult. Historically, these are used as engineering tools, not as operational tools.

- Optimizations only produce schedules
- Running simulations requires
 expertise and debugging
- Lack of Real-time Data Sharing

∆ ASIC

- 2022 -

NATIONAL CONFERENCE

From there, we developed WaterWatch: a stand-alone software for Windows 10 & 11 devices that allows for real-time simulations of water systems in an operator-friendly environment.

∆ ASIC

This tool enabled operators to test changes to their system and see immediate feedback.

We piloted the software initially as an educational tool.

Figure From: Good, Robert. November 9 (2021). WaterWatch Software: A Planning and Management Tool for the Whole Team. Webinar. University of California Davis. https://cwee.ucdavis.edu/waterwatch/

- 2022 -

NATIONAL CONFERENCE

We installed high-resolution energy meters at each pump station in the utility. Would the experiments from the tool result in real-world savings at the utility?
- 2022 -

NATIONAL CONFERENCE

- 2022 -

NATIONAL CONFERENCE

- 2022 -NATIONAL CONFERENCE

 Table: Regression Results for WaterWatch, Controlling for Calendar Date

Dependent Variable	Power Demand	Energy Intensity	Energy Consumption
(Units)	(kW)	(MWh / MG)	(kWh / 15 min)
Average	728.5–883.2	0.673–0.676	182.1–220.8
Constant	547.713***	0.664***	136.928***
Constant	(43.64)	(0.03)	(10.91)
Utilized WaterWatch	-145.634***	-0.008	-36.408***
Within Previous 5 Days	(26.5)	(0.02)	(6.62)
Percent Impact	-16.49%	N/A	-16.49%
Control for Water Sales	-	-	-
Control for Hour of Day	-	-	-
Control for Month of Year	-	-	-
Control for Exact Date	YES	YES	YES

Results of an ordinary least-squares linear regression with the specified controls. Results presented include the coefficient, (standard error), and significance***.

- 2022 -NATIONAL CONFERENCE

Table: Regression Results for WaterWatch, Controlling for Month of the Year

Dependent Variable	Power Demand	Energy Intensity	Energy Consumption
(Units)	(kW)	(MWh / MG)	(kWh / 15 min)
Average	728.5– 883.2	0.673–0.676	182.1–220.8
Constant	450.091***	0.598***	112.523***
Constant	(6.79)	(0)	(1.7)
Utilized WaterWatch	-39.562***	-0.025***	-9.891***
Within Previous 5 Days	(6.62)	(0)	(1.65)
Percent Impact	-4.48%	-3.70%	-4.48%
Control for Water Sales	-	-	-
Control for Hour of Day	-	-	-
Control for Month of Year	YES	YES	YES
Control for Exact Date	-	-	-

Results of an ordinary least-squares linear regression with the specified controls. Results presented include the coefficient, (standard error), and significance***.

- 2022 -NATIONAL CONFERENCE

Table: Regression Results for WaterWatch, Controlling for Month and Hour

Dependent Variable	Power Demand	Energy Intensity	Energy Consumption
(Units)	(kW)	(MWh / MG)	(kWh / 15 min)
Average	728.5–883.2	0.673–0.676	182.1–220.8
Constant	401.864***	0.591***	100.466***
Constant	(8.65)	(0.01)	(2.16)
Utilized WaterWatch	-35.582***	-0.027***	-8.896***
Within Previous 5 Days	(4.95)	(0)	(1.24)
Percent Impact	-4.03%	-3.99%	-4.03%
Control for Water Sales	-	-	-
Control for Hour of Day	YES	YES	YES
Control for Month of Year	YES	YES	YES
Control for Exact Date	-	-	-

Results of an ordinary least-squares linear regression with the specified controls. Results presented include the coefficient, (standard error), and significance***.

- 2022 -NATIONAL CONFERENCE

 Table: Regression Results for WaterWatch, Controlling for Month, Hour, and Water Sales

Dependent Variable	Power Demand	Energy Intensity	Energy Consumption
(Units)	(kW)	(MWh / MG)	(kWh / 15 min)
Average	728.5– 883.2	0.673–0.676	182.1–220.8
Constant	405.202***	1.038***	101.301***
Constant	(14.1)	(0.01)	(3.53)
Utilized WaterWatch	-35.570***	-0.025***	-8.892***
Within Previous 5 Days	(4.95)	(0)	(1.24)
Percent Impact	-4.03%	-3.70%	-4.03%
Control for Water Sales	YES	YES	YES
Control for Hour of Day	YES	YES	YES
Control for Month of Year	YES	YES	YES
Control for Exact Date	-	-	-

Results of an ordinary least-squares linear regression with the specified controls. Results presented include the coefficient, (standard error), and significance***.

- 2022 -NATIONAL CONFERENCE

How Does Electricity Relate to Water?

- What is the size of the Water Sector?
 - How large is the end-use component?
 - How large is water pumping?
- Do changes in the Water Sector impact the Energy Sector?
- What are some practical examples of Energy Load Shifting?
 - Wholesale, Proxy Demand Response Program at a Treatment Plant
 - Real-time Decision Support at a Water Distribution System
 - Reducing Peak Irrigation Customer Water Demand

∆ ASIC

What would be benefit of irrigation shifting at a reclaimed water system?

Photos by the Moulton Niguel Water District.

- 2022 -NATIONAL CONFERENCE

WATER PUMPING TO ACHIEVE DEMAND

We found that there were hundreds of ways to run a reclaimed system with water storage – and those options grew if you considered shifting irrigation demand.

- 2022 -

NATIONAL CONFERENCE

We found that there were hundreds of ways to run a reclaimed system with water storage – and those options grew if you considered shifting irrigation demand.

Figure From: Good, R. (2018). "Reducing Electricity Grid Imbalances through Energy Demand Management of Water Delivery Infrastructure." Master's Thesis. March 9th 2018, University of California, Davis.

- 2022 -NATIONAL CONFERENCE

Table: Optimization Results for the Recycled Water Distribution System of the Moulton Niguel Water District

Scenario	% Change to Total Energy Consumed	% Change to Total Emissions	% Change to Carbon Intensity of Energy Consumed
	% of MWh	% of mTCO ₂ e	% of mTCO ₂ e / MWh
Optimized	17.97%	22.23%	5.42%
Optimized With Water Demand Shifted	27.82%	30.55%	3.76%

Results of a pump-schedule optimization over a 48-hour period utilizing a particle swarm optimization.

On average, shifting the irrigation customer demands to reduce the peak increased potential energy savings from 18% to 28%.

Figure From: Good, R. (2018). "Reducing Electricity Grid Imbalances through Energy Demand Management of Water Delivery Infrastructure." Master's Thesis. March 9th 2018, University of California, Davis.

NATIONAL CONFERENCE

In the context of cost-effective ways to reduce carbon emissions, shifting and conservation in the water sector are some of the most competitive options

Figure From: Good, R. (2018). "Reducing Electricity Grid Imbalances through Energy Demand Management of Water Delivery Infrastructure." Master's Thesis. March 9th 2018, University of California, Davis.

- 2022 -NATIONAL CONFERENCE

- 2022 -NATIONAL CONFERENCE

We started by developing a tool that solves for pump controls (If...then...else) rather than solving for 24-hour schedules. But we needed a tool that could be overridden in real-time.

Figure From: D. Linz, B. Ahmadi, R. Good, E. Musabandesu and F. Loge, "Multi-Threaded Simulation Optimization Platform for Reducing Energy Use in Large-Scale Water Distribution Networks with High Dimensions," 2020 Winter Simulation Conference (WSC), 2020, pp. 704-714, doi: 10.1109/WSC48552.2020.9383920.

- 2022 -NATIONAL CONFERENCE

- 2022 -NATIONAL CONFERENCE

Depending on the ration of storage to pumping capacity to customer demand, the flexibility of operations at each water system can vary widely.

Figure From: Rupiper, A., Good, R., Miller, G., & Loge, F. (2022). Mitigating renewables curtailment and carbon emissions in California through water sector demand flexibility. In Review at Applied Energy

- 2022 -

NATIONAL CONFERENCE

Table: Annual average daily peak net energy demanded from the CA water distribution sector, magnitude and percent reduction in average daily net peak demand relative to scenario one for all eight scenarios.

Scenario	Annual Average Daily Peak Net Energy Demanded	Change in Annual Average Daily Peak Net Energy (From Scenario 1)	Percent Change in Average Daily Peak Net Demand (From Scenario 1)
(Consumption / Demand) ¹	(MW) ¹	(MW)	(%)
1 (Flat/None)	378.3	0.0	0.0%
2 (Flat/Flat)	376.1	-2.1	-0.6%
3 (Low/High)	342.5	-37.9	-9.3%
4 (TOU/None)	92.5	-285.7	-75.6%
5 (Flat/TOU)	295.3	-82.7	-21.8%
6 (TOU/Flat)	375.2	-2.6	-0.7%
7 (RTP/None)	56.3	-321.5	-85.1%
8 (Emissions)	105.6	272.1	-72.0%

1. Peak energy measured as energy demanded at the 7pm hour (representing the net peak demand on the CA grid in 2020)

Water distribution pumping appears to account for 1.2% of all demand in California – and up to 85% of that demand could be shifted out of the 7pm period with demand charges removed.

- 2022 -

NATIONAL CONFERENCE

- 2022 -

NATIONAL CONFERENCE

- 2022 -

NATIONAL CONFERENCE

Water Manager and Irrigation Consultant

The inner workings of a necessary relationship

Glenn Kramer, O'Connell Landscape Steve Hohl, Water Concern

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

Rancho Mission Viejo

- Master Planned in 2010
- Broke ground 2012
- Three Villages to date
 - Sendero
 - Esencia
 - Rienda opened early April 2022
- Ultimate 14,000 homes
- 2,100 acres (59, 30, 11)
- 5,500 AF / year recycled water
- 900 controllers
- Central control with flow management

Rancho Mission Viejo

Rancho Mission Viejo

Managing H2O for HOAs

Rene Orta, Mosaic Consulting

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

Horticulture • Irrigation • Soils

Presenter: Rene Orta Horticulture & Water Manager Consultant

Introduction

- Who is Mosaic?
- Who is Rene Orta?
- Case Study: Ladera Ranch, CA
- Stakeholders

Bridging the Gap

- HOA boards
- Water Purveyor
- Irrigation Consultants
- Maintenance

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

Presenter: Rene Orta Horticulture & Water Manager Consultant

- 2022 -NATIONAL CONFERENCE

Mosaic Consulting Inc. bridges the gap between **communities** and their **manufactured landscapes**. We challenge deep-rooted industries and **deliver innovative solutions** that meet the needs of all **stakeholders** involved.

Mosaic has been providing Administrative, Horticulture, Arboriculture, and Water Management services for over 20 years in Southern California. We primarily deal with HOA and HOA boards providing the following:

			Related to todays topic:
BUDGET	PROJECT STATUS	CONTRACT MANAGEMENT	DASHBOARD WATER MANAGEMENT VARENT

- 2022 -NATIONAL CONFERENCE

RENE ORTA

I grew up working in the landscape industry. My first full time job was propagating, nursing, and watering at my family owned plant nursery. My love for plants lead me to attain a Bachelors of Science in Landscape architecture with an emphasis in irrigation design. Currently, I manage the central irrigation system and help oversee landscape maintenance contracts for large HOAs. Over the last 5 years I have concentrated on education. I strongly believe education is the key to change and success.

Education

B.S. Landscape Architecture Minor in Irrigation Design CalPoly Pomona, CA

MSA – Parks and Recreation Central Michigan University, MI

Certificates

QAL CPSI CLIA CLCA-WM QWEL

Why water conservation?

Landcare (Trugreen landscape) JMS Design Firm Ortas Nursery UCANR Orange County Regional Parks MOSAIC

"DO or DO NOT... there is no try" - Yoda

Work Credentials

"There is no life without water" – Albert Szent-Gyorgyi

- 2022 -NATIONAL CONFERENCE

Ladera Ranch

750 Irrigated Acres

350 Slopes, 98 Fuel mod, 157 Turf, 126 Shrubs 591 miles of pipe, 1597 miles of irrigation wire

50,000 Trees

Ladera Ranch has more trees than Central Park, NY Oaks, Sycamore, Tristania, Schinus, Palms, Crape myrtles

5-7 million dollar budget

Budget consists of landscape contracts, water budget, irrigation repairs, and capital improvement projects.

12 Sports fields + 2 dog parks

One 5 acre open grass field, 3 soccer fields, 8 Baseball/Soccer fields

276 Central Irrigation Controllers + 50 Battery operated controllers Mosaic Consulting and Hydropoint Data Systems worked together to develop a new feature for their central control cloud system.

∆ ASIC

- 2022 -NATIONAL CONFERENCE

Ladera Ranch

HOA Boards

- Educate
- Manage Budget
- Provide Solutions
- Oversee
 Maintenance
 contracts
- Maintenance
 prevention

Water Purveyor

- Educate
- Water allocations
- Plant Coefficients
- Reclaimed water
 compliance walks
- Water availability
- Water window compliance negotiations

• REBATES!

Designers

- Educate
- Field walks
- Collaboration
- Design Revisions

Maintenance Contractors

- Educate
- Project Management
- Direct Oversight
- Specifications
- Overview
- Landscape
- Inspections
- Irrigation
- Inspections

Coffee and Bagel discussions

HOA BOARDS

- 2022 -NATIONAL CONFERENCE

AASIC

Transparancy

- 2022 -NATIONAL CONFERENCE

Designers

COLLABORATION

TABLE 1. Plant factors (PF)/crop coefficients (K_c) for established landscape plants in California

Plant type	Plant factor (PF)*/ Crop coefficient (K _c)†
Landscape plants with high water use	0.7–0.9*
Landscape plants with medium/moderate water use	0.4–0.6*
Landscape plants with low water use	0.1–0.3*
Landscape plants with very low water use	< 0.1*
Warm-season turfgrass (Bermudagrass, zoysiagrass, St. Augustinegrass, buffalograss)	0.6†
Cool-season turfgrass (tall fescue, Kentucky bluegrass, ryegrass, bentgrass)	0.8† UCANR.EDU

- 2022 -NATIONAL CONFERENCE

Designers

Irrigation Firms – Landscape Architecture Firms

Irrigation Firms – Irrigation firms

Irrigation Firms – Water Managers

Irrigation Firms – Landscape Maintenance

Irrigation Firms – Water purveyors

COLLABORATION

Water Managers – Landscape Architecture Firms

Water Managers – Landscape

Maintenance

Water Managers – Water purveyors

- 2022 -NATIONAL CONFERENCE

Designers

Optimize Flow Browng the (07.02001) (0) register day for Avendale. Irrigation can occur between 7.00pm and 1.00pm. Avendale Teor Requirements Status (355,249) (additional body for the formation of the for	ccount : Ladera Ranch HOA	Site : Av	vendale	< >	Search b	y account (or site		•						
Avendale Flow Requirements 355,229 bit Galaxe Optimize Save / Apply Cancel 000 000 000 000 000 000 000 000 000 00	Optimize Flow	Showing	the 07/28	/2019	irrigation d	ay for Aver	ndale. Irrigat	ion can oc	cur betwee	en 7:00pm a	and 1:00pm	ğ.			
Optimize Save / Apply 400 400 400 400 400 400 400 400 400 400											FI	Ave ow Require	endale ements	386, Total G	249) (
Hydraulic Tree Bun 7/28/2019 Mon 7/28/2019 Collecte Excended 7.00gm 8.00gm 9.00gm 10:00gm 1:00gm 2.00gm 3.00gm 4.00gm 5.00gm 7.00gm 8.00gm 7.00gm 7.00gm 8.00gm 7.00gm 7.00gm <th>Optimize Save / Apply Cancel</th> <th>1400 - 1200 - 800 - 800 - 400 - 200 - 7:00pm</th> <th>8:00om</th> <th>9:00pm</th> <th>10:00cm 1</th> <th>11:00pm</th> <th>12:00am</th> <th>1.00am</th> <th>2:00am</th> <th>3:00am</th> <th>4:00am</th> <th>5:00am</th> <th>6:00am</th> <th>7:00am</th> <th>8:00am</th>	Optimize Save / Apply Cancel	1400 - 1200 - 800 - 800 - 400 - 200 - 7:00pm	8:00om	9:00pm	10:00cm 1	11:00pm	12:00am	1.00am	2:00am	3:00am	4:00am	5:00am	6:00am	7:00am	8:00am
Collecte Extend 7.00pm 8.00pm 9.00pm 10.00pm 10.00pm 2.00am 3.00am 4.00am 5.00am 7.00am 8.00am Avendale Avendale <t< td=""><td>Hydraulic Tree</td><td>Sun 7/28</td><td>/2019</td><td>e. oopini</td><td>10.000</td><td>(1.90pm)</td><td>Mon 7/29/</td><td>2019</td><td>2.00011</td><td>0.000.11</td><td></td><td>0.000.11</td><td>0.000.11</td><td>1.00011</td><td>0.00011</td></t<>	Hydraulic Tree	Sun 7/28	/2019	e. oopini	10.000	(1.90pm)	Mon 7/29/	2019	2.00011	0.000.11		0.000.11	0.000.11	1.00011	0.00011
Avendale Avendale Phase 3 Domestic 203 GPM 005-10 51 GPM 005-10 51 GPM 005-10 CANTERRA 091321 Turf/Shrub A: Water Window 006-00 096-00 006-00 090-00 006-00 090-00 006-00 09012273 Turf/Shrub A: Water Window 006-05 0901227 Turf/Shrub A: Water Window 006-06 090-05 006-05 0901227 Turf/Shrub A: Water Window Phase 3 Phase 3 005-00 09014237 A: Water Window 09014237 A: Water Window 09014237 Turf/Shrub A: Water Window Phase 3 Phase 3 005-00 09014237 SL B: Water Window 900pm to 8:00am 09014232 SL B: Water Window 900pm to 8:00am 0901423 G0pm to 8:00am 0901423 SL B: Water Window 900pm to 8:00am	Collapse Expand	7:00pm	8:00pm	9:00pm	10:00pm	11:00pm	12:00am	1:00am	2:00am	3:00am	4:00am	5:00am	6:00am	7:00am	8:00an
Phase 3 Domestic 203 GPM 005-10 51 GPM 005-10-CANTERRA 001321 Turf/Shrub A: Water Window 006-00 006-00 006-00 005-10 GPM 006-00 006-00 006-00 0011273 Turf/Shrub A: Water Window 006-05 006-05 006-06 73 GPM 006-05 006-05 006-06 73 GPM Phase 3 Phase 3 006-05 006-05 006-06 113 GPM 005-00 113 GPM 005-00 113 GPM 005-00 005-00 005-00 113 GPM 005-00 005-00 005-00 113 GPM 005-00 005-00 SL Water Window 900pm to 8 00am 005-00 SL B: Water Window 900pm to 8 00am 005-00 B: Water Window 900pm to 8 00am 900pm to 8 00am 005-00 B: Water Window 900pm to 8 00am <	Avendale		1								Ave	ndale			
005-10 51 GPM 005-10-CANTERRA 06013621 Turf/Shrub A: Water Window 006-00 060-00 006-00 06012783 Turf/Shrub A: Water Window 006-00 06012783 Turf/Shrub A: Water Window 006-05 73 GPM 006-05 73 GPM 006-06 006-05 006-05 09014257 Turf/Shrub A: Water Window 006-00 0914257 Turf/Shrub A: Water Window 005-00 0112 GPM © 005-00 012 GPM © 005-00 09014432 Turf/Shrub PUpper to 8/00am SL B: Water Window 9:00prito 8:00am 9:00prito 8:00am SL B: Water Window 9:00prito 8:00am 9:00prito 8:00am	Phase 3 Domestic			🍐 Pha	ise 3 Dome	stic						2	203 GPI	и	
005-10- CANTERRA 09013621 TurfShrub A.: Water Window 006-00 51 006-00 006-00 51 006-00 006-00 009012783 TurfShrub A: Water Window 006-05 009-05 006-05 009102783 006-05 00912783 006-05 00912783 006-05 0091277 006-05 00914257 A: Water Window 0091010 6:00am 005-00 0091010 6:00am 005-00 00914227	005-10					005	i-10						51 GPI	M	
Turt/Shrub A: Water Window 006-00 61 GPM 006-00 61 GPM 006-00 61 GPM 006-00 09012783 Turt/Shrub A: Water Window 11:00pm to 7:00am 09012783 006-05 73 GPM 006-05 73 GPM 006-05 73 GPM 006-05 09014237 Turt/Shrub A: Water Window 006-05 09014237 Turt/Shrub Phase 3 Obe-00 0914237 Turt/Shrub 005-00 005-00 013 GPM 005-00 09014432 Turt/Shrub A: Water Window 005-00 09014432 Turt/Shrub A: Water Window 005-00 09014432 SL B: Water Window 9.00pm to 8.00am 9.00pm to 8.00am SL B: Water Window 9.00pm to 8.00am 9.00pm to 8.00am	005-10- CANTERRA					005	-10- CANTE	RRA					0901362	1	
Image: Construction of the second of the	Turf/Shrub					A: Wat 11:00pr	ter Window m to 7:00am	2							
Image: Constant of the set of the s	008-00					006	-00						51 GPI	M	
Turf/Shrub A: Water Window 11:00pm to 7:00am 006-05 73 GPM 006-05 73 GPM 006-05 09014257 Turf/Shrub A: Water Window 9:00pm to 6:00am Phase 3 Phase 3 005-00 113 GPM 005-00 09014232 Turf/Shrub A: Water Window 9:00pm to 6:00am 005-00 005-00 005-00 09014432 Turf/Shrub A: Water Window 9:00pm to 6:00am SL B: Water Window 9:00pm to 6:00am 005-01 005-01	006-00					006	6-00						0901278	3	
• 006-05 • 006-05 • 73 GPM • 006-05 • 006-05 • 09014257 • Urf/Shrub • 006-05 • 09014257 • Phase 3 • Phase 3 • Phase 3 • 005-00 • 005-00 • 113 GPM • 005-00 • 005-00 • 009011432 • 005-00 • 005-00 • 0090113 • 005-00 • 005-00 • 009011 • SL • Window • 009m to 6:00am • 005-01 • 005-01 • 005-01	Turf/Shrub					A: Wat 11:00pr	ter Window m to 7:00am	5						Ī	
Image: constraint of the set of the	008-05			006	-05							73 GPI	N		
Turf/Shrub A: Water Window 9:00pm to 8:00pm Phase 3 Phase 3 005-00 005-00 005-00 005-00 005-00 009014432 Turf/Shrub A: Water Window 9:00pm to 8:00am B: Water Window 9:00pm to 8:00am B: Water Window 9:00pm to 8:00am Image: Comparison of Comp	□ 006-05			006	-05							0901425	7		
Phase 3 Phase 3 © 005-00 005-00 113 GPM © 005-00 0005-00 09014432 Turf/Shrub A: Water Window 9:00pm to 0:00am 0000 SL B: Water Window 9:00pm to 0:00am 0000 © 005-01 - 005-01 - 005-01	Turf/Shrub			A: Wat 9:00pm	ter Window to 6:00am	al internet									
005-00 113 GPM 005-00 113 GPM 005-00 09014432 Turf/Shrub A: Water Window 9:00pm to 6:00am SL B: Water Window 9:00pm to 6:00am 0:05-01 -005-01	Phase 3			Phase 3											
Image: 005-00 Image: 005-00 09014432 Tur#/Shrub A: Water Window 9:00pm to 6:00am 9:00pm to 6:00am SL B: Water Window 9:00pm to 6:00am 9:00pm to 6:00am Image: 005-01 - 005-01 - 005-01	⊟ 005-00			005	-00							113 GPI	M		
Turf/Shrub A: Water Window 9:00pm to 8:00am SL B: Water Window 9:00pm to 8:00am © 005-01 - 005-01	005-00			005	i-00							0901443	2		
SL B: Water Window 9:00pm to 6:00am © 005-01 © 005-01	Turf/Shrub			A: Wat 9:00pm	ter Window to 6:00am										
005-01 005-01	SL			B: Wat 9:00pm	ter Window to 6:00am										
	005-01			- 005	-01									_	

- *2022* -National conference

Designers

Educate

- Design with rebates in mind
- $\circ~$ Know the process and procedures
- $\circ~\mbox{Spec}$ appropriately

Local water purveyor & Metropolitan Agency

• Rebates can be combined

Know local water window restrictions and enforcement policies, design appropriately.
Drip requires long cycle soak times and schedules could surpass water window limitations.

Watering limitations how they impact water windows

• Gallons of water per acre?

- Max GPM per area, street, meter, and hydrozone.
- Zone pressure restrictions

Process order can differ per agency.
We took over an account after a turn over walk, and the HOA asked us to attain rebates. This particular agency requested field walks pre and post install of any rebate item. We couldn't get any rebate money, the HOA had budgeted for the cost of the project. HOA had to use reserve funds instead.

Water window negotiations

- ALLOWED DAY irrigation of Drip Irrigation
- ALLOWED DAY irrigation for interior slopes (away from public)
- ALLOWED DAY irrigation for areas with nightly pressure problems (had water purveyor do inhouse PSI tests)
- ALLOWED staggered water window start times to reduce mass pressure loss

- 2022 -NATIONAL CONFERENCE

Designers

Water limitations

 $\circ~5$ million gallon tank & 2 million

gallon tank

peak demand exceeds

- 7 million & 3 million gallons
- a. Worked with water purveyor to
 gather infrastructure as builds. Knowing
 max flows allows us to determine how
 many controllers/valves we can run at
 the same time.

b. Before everything ran at 8pm. Inlet
PSI would drop to 30-50 PSI. Specific
example: is six – 2" meters on a 6" line.
We now have staggered times for two
sets of 3 controllers each.

Hydraulic Tree	Inspect	Hydraulic Tree	Inspect	Hydraulic Tree
Q Search hydraulic tree	↑ ↓	Q Search hydra	ulic tree 1	Q Search hydraulic tre
	Collapse Expand		Collapse Expand	
👬 Oak Knoll	+ 0	Oak Knoll	+ 0	Oak Knoll
🕨 💧 Oak Knoll	600 gpm 🕂 🗘	🔺 💧 Oak Knoll	600 GPM 🕂 🔷	🖌 💧 Oak Knoll
Oak Knoll - DM -	450 GPM 🕂 🗘) 🛑 001-09	78 GPM 🕂 🗘	a 😑 001-09
🕨 💧 Oak knoll Benjamin	270 дрм 🕂 🔷) 🛑 001-10	72 gpm 🕂 🔷	001-09 - Turf/Shru
) — 001-12	72 gpm 🕂 Ö	001-09
) 🛑 001-13	85 GPM 🕂 🔷	🖌 👄 TML1FZ1 2in
		• - 001-14	75 GPM 🕂 🔷	001-09 - Turf/Sh
) 🗖 001-15	63 GPM 🕂 🔷	🔺 📼 TML1FZ2 2in
) 🛑 001-18	97 GPM 🕂 🔷	001-09 - Turf/Sh
		• - 001-19	102 GPM 🕂 🔷	001-09 - Tree
		• - 001-20	88 GPM 🕂 🗘	001-10
) 🛑 001-21	72 дрм 🕂 💠 🗸	001-12

Hydra	aulic Tree	Inspect
Q	Search hydraulic tree	† ‡
	ak Keell	Collapse Expand
	Oak Knoll	600 GPM + 🔷
	001-09	78 GPM 🕂 ᅌ
	001-09 - Turf/Shrub	76 GPM 33 0
	001-09	72 GPM 4/4 Ø
	TML1FZ1 2in	65 GPM 🕂 Ö
	001-09 - Turf/Shrub	55 GPM 5
	TML1FZ2 2in	62 GPM 🕂 🔿
	001-09 - Turf/Shrub	53 GPM 3/41
	001-09 - Tree	7 GPM 1
•	001-10	72 gpm 🕂 🗘
	001-12	72 gpm 🕂 🁌 🎽

- 2022 -NATIONAL CONFERENCE

Designers

Understand how reclaimed water damages all aspects of horticulture and specifically irrigation.

- Know your water source!! Simply knowing its reclaimed is not enough. Where is it from? What do the quality reports look like?
- Shorter life expectancy for galvanized pipe, valves, sprinklers, nozzles. Chlorine accelerates corrosion and decomposition of materials
- Hardness of water clogs nozzles quicker.
- Water crystalizes during off months
- Water molds over, grow bacteria during off months

Understand how reclaimed water damages all aspects of horticulture and specifically irrigation.

- We are replacing all galvanized with PCV
- o Specifying reclaimed water components. "More durable"
- $\circ~$ Exercise all components and allow water flow during off months.
- Flush all drip valves to remove algae growth and slime.
- Treat with chemical for algae and hardness- fertitank

Understand long term affects of reclaimed water on soil and plants. Analyze appropriately, and consider hydrozones encompassing future replanting changes

- *2022 -*National conference

Designers

- 2022 -National conference

Designers

Sample Id :	Chaparral									Sample Id : O	so Grande	Park							
	57 	SAT	URATION	EXTRACT - F	LANT SU	TABILITY						SATU	IRATION E	XTRACT -	PLANT SUI	TABILIT	Y		
					Effect on Pla	int Growth									Effect on Plai	nt Growth	R.		
Test	Result	Negligi	ble	Sensitive Crops Restricted	Many	Crops icted Cr	Only Tolera	ant actory	Few Crops Survive	Test	Result	Negligib	le Se	nsitive Crops Restricted	Many C Restri	cted	Only To Crops Sati	lerant sfactory	Few Crops Survive
Salinity (ECe)	1.8 dS/m									Salinity (ECe)	15.6 dS/m								
Sodium Adsorption Ratio (SAR) *	4.61									Sodium Adsorption Ratio (SAR) *	10.14		i						
Boron (B)	1.01 ppm		-							Boron (B)	1.70 ppm	<u>l</u>	476 #1						
Sodium (Na)	10.0 meq/L									Sodium (Na)	71.4 meq/L		i		-				
Chloride (Cl)										Chloride (Cl)									
Carbonate (CO3)		1								Carbonate (CO3)									
Bicarbonate (HCO3)		1								Bicarbonate (HCO3)									
Fluoride (F)		1								Fluoride (F)									
Structure and wate	r infiltration of minera	al soils potentia	Ily adversely	affected at SAR	values higher	than 6.				* Structure and water in	nfiltration of mine	ral soils potential	ly adversely al	fected at SAR	values higher	than 6.			
Test	Result	Strongly M Acidic	oderately Acidic	Slightly Acidic	leutral	Slightly Mo Alkaline A	derately Alkaline	Strongly Alkaline	Qualitative	Test	Result	Strongly Mo Acidic	derately S Acidic	Slightly Acidic	Neutral	Slightly Alkaline	Moderately Alkaline	/ Strongly Alkaline	Qualitative Lime
рН	6.9 s.u.								None	рН	7.6 s.u.	l. Í	1						Low
	1 1		EXTRA				I				U.A.		EXTRAC	TABLE NU	TRIENTS		A.:	-310	a
		Sufficiency		S	OIL TEST R	ATINGS		1	NOAN	Test	Result	Sufficiency			SOIL TEST RA	TINGS			NO3-N
lest	Result	Factor	Very Low	Low	Medium	1 Optimu	ım Ve	ry High	NO3-N	Available N	20	Factor	Very Low	Low	Medium	Op	otimum	Very High	
Available-N	31 ppm	0.6							16 ppm	Available-N Dharabasus (D) Olsan	30 ppm	0.4		-					12 ppm
Phosphorus (P) - Olser	13 ppm	0.4							io ppin	Potassium (K)	235 ppm	0.7				1			NH4-N
Potassium (K)	28 ppm	0.2							NH4-N	Potassium - sat. ext.	5.2 meg/l				T				10 0000
Potassium - sat. ext.	1.9 meq/L					_			15 ppm	Calcium (Ca)	3250 ppm	0.7		1					та ррп
Calcium (Ca)	1230 ppm	0.8			1			1.0	Trust	Calcium - sat. ext.	42.0 meq/L							÷	Total
Calcium - sat. ext.	6.4 meq/L		_			1			Exchangeable	Magnesium (Mg)	1790 ppm	3.0							Exchangeable
Magnesium (Mg)	363 ppm	1.7	-		1				Cations(TEC)	Magnesium - sat. ext.	57.1 meq/L								Cations(TEC)
Magnesium - sat. ext.	3.0 meq/L							f		Copper (Cu)	1.4 ppm	0.4							277 mog/kg
Copper (Cu)	0.8 ppm	0.7							94 meq/kg	Zinc (Zn)	4 ppm	0.3		1					277 шец/ку
Zinc (Zn)	7 ppm	1.4		Ť	1				199870	Manganese (Mn)	1 ppm	0							
Manganese (Mn)	1 ppm	0.1								Iron (Fe)	23 ppm	0.2							
Iron (Fe)	32 ppm	0.7								Boron (B) - sat. ext.	1.70 ppm	5.7							
Boron (B) - sat. ext.	1.01 ppm	3.4		-	-					Sulfate - sat. ext.	120.0 meq/L	40.0							
Sulfate - sat. ext.	10.0 meq/L	3.3		Г	T.	1				Exch Aluminum									
Exch Aluminum	-		-										1						
)										

- 2022 -NATIONAL CONFERENCE

Designers

How can you create hydrozones if you don't know the plant name, therefore, plant factors?? Landscape Architects can be challenged, double check their work, as it affects your work

TABLE 1. Plant factors (PF)/crop coefficients (K_c) for established landscape plants in

 California

Plant type	Plant factor (PF)*/ Crop coefficient (K _c)†
Landscape plants with high water use	0.7-0.9*
Landscape plants with medium/moderate water use	0.4–0.6*
Landscape plants with low water use	0.1–0.3*
Landscape plants with very low water use	< 0.1*
Warm-season turfgrass (Bermudagrass, zoysiagrass, St. Augustinegrass, buffalograss)	0.6†
Cool-season turfgrass (tall fescue, Kentucky bluegrass, ryegrass, bentgrass)	0.8† UCANR.ED

Pennisetum – Fountain grass

- When we have "programming issues" typically plant type solves the problem.
- Helps with consistency

x 1 x

• Have PLANT ID walks with irrigation consultants

12	SH-LW-SLD-TOP-MSU-R5
13	SH-LW-SLD-MID-MSU-R5
14	SH-LW-SLD-TOE-MSU-R5
15	TR-8U-Crapes
16	TR-BU-
17	SH-HW-SLD-TOP-SUN-R5
18	SH-HW-SLD-TOE-SUN-R5
19	TF-HW-PP-FLT-SUN-SP
20	SH-MW-PP-FLT-MSU-SP
21	TF-HW-PP-FLT-SUN-SP
22	SH-HW-SLD-TOE-MSU-SP

- 2022 -NATIONAL CONFERENCE

Designers

DESIGN – POC

- o Normally open master valve
- Adding quick couplers before and after

Nt/-

POC

- Avoid water hammer or air in the lines We've eliminated mainline breaks on controllers with over 10+ years of historically yearly breaks.
- Helps with maintenance requests for water
- We've made it a standard to add quick couplers before and after the POC.
 - Accurate pressure readings
 - Allows master valve testing
 - Preventative

DESIGN – Sprinkler Design

- Have maintenance in mind
- Practicality not aesthetics
- Design my valve max threshold, not pipe size. Lateral breaks could equal the amount of GPM for the sprinklers by-passing high flow alerts.
- Rotaries have their place and time. (In the testing warehouse!).

Sprinklers

- Surprised to know how many designers have never been a job site!! We encourage designers to attend turn over walks, and visit sites a few years after.
- Do not exceed lateral GPM max threshold, different from valve GPM max threshold.
- With proper maintenance everything works as designed and intended. Reality most of the time that's not the case, therefore do not plan for it. Rotaries need weekly checks.

- 2022 -NATIONAL CONFERENCE

Misconception – Drip is not the savior of sustainability and water conservation

- **Drip has a proper time and place**
 - > Commercial and Residential still has a lot to learn from Agricultural drip
 - > Evaluate: site conditions, plant scheme, soil conditions, foot traffic, water quality
- Do not use when planting for ground covers
 - > Will not be maintained: inspected, flushed or repaired. Small breaks are difficult to spot.
 - Mass plant die back for repairs
 - Specially in thorn planting. Best to have spray in these circumstances.
- Knowing your water quality
 - Hardness will clog
 - > Bacteria will create algae and slime, which has to be chemically treated. Need a fertitank
- o **Plans**
 - Spec indicators
 - Spec drip location in regards to plant location
 - > Do not design drip by plant rootball. We want to encourage growth
 - > Drip for turf??? Yeah I'm not touching that subject. NEXT

- 2022 -NATIONAL CONFERENCE

General Design

- > We have the power to shutdown the Landscape architect curve or at least lower the radius!
- > Design Hydrozone/valve order with wet checks in mind.
- > Best location for controllers: toe of the slope, pocket parks, planter after the sidewalk (not adjacent to street)
- Worst location for controllers: major streets, medians
- Rotor/Spray 6" from any hardscape surface (not up to it)
- > At least two extra cables for the main bundle, and one extra cable for every large T'off
- Valves in planters or grass: consistency
- Sport Fields
 - Infield hose connections
- Reclaimed Water
 - Keep valve locations in mind for easy accessibility. All components, specially boxes could be checked yearly for compliance.
- Water management
 - > Create Hydraulic trees for different sites based on maximum allowed capacity of mainline

- *2022 -*National confe<u>rence</u>

Maintenance

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS - 2022 -NATIONAL CONFERENCE Hotel Monteleone NEW ORLEANS

Horticulture • Arboriculture • Irrigation • Soils

Presenter: Rene Orta Horticulture & Water Manager Consultant

AMERICAN SOCIETY OF IRRIGATION CONSULTANTS

NATIONAL CONFERENCE Hotel Monteleone

NEW ORLEANS

