

ASIC 2016

NORTHEAST REGIONAL CONFERENCE APRIL 21 – 22, 2016 Westchester, NY

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Theresa Backhus

ASIC 2016 REGIONAL CONFERENCES

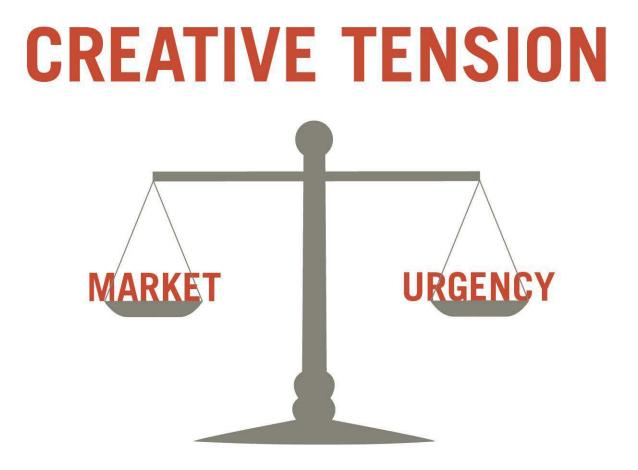
Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

USGBC Update LEED v4: Impact on the Irrigation Industry

Theresa Backhus, USGBC Presentation Provided by: USGBC

ASIC 2016 REGIONAL CONFERENCES


Southeast, Southwest, Northeast, & California

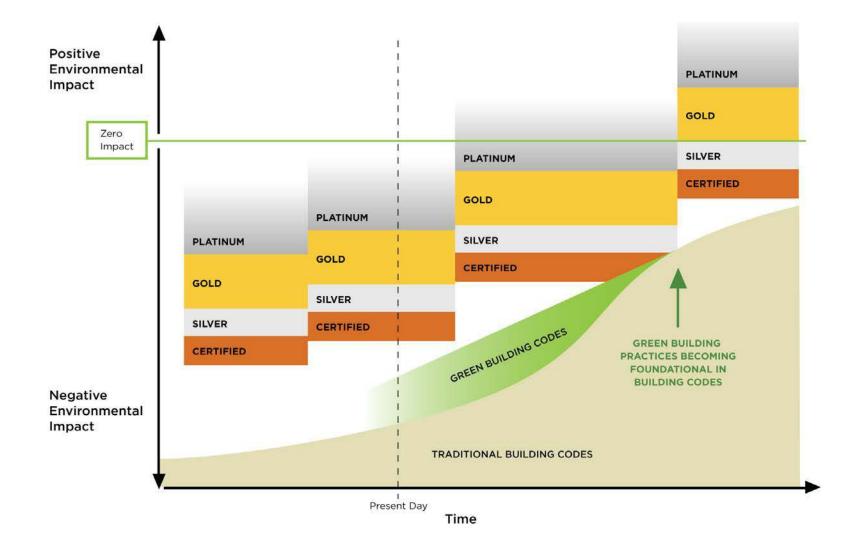
American Society of Irrigation Consultants

The Evolution of LEED: Where has it been?

LEED 2009 (v3)

Must comply with environmental **laws**

Must be a complete, **permanent** building or space


Must use a reasonable site **boundary**

Must comply with minimum **floor area** requirements

Must comply with minimum occupancy rates

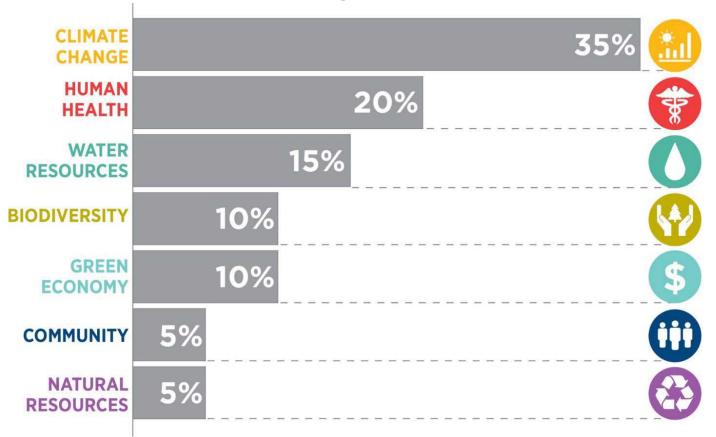
where Must commit to **sharing** wholebuilding energy and water usage **data**

Must comply with a minimum building area to site area **ratio**

Sunset Dates

Rating system	REGISTRATION CLOSE	CERTIFICATION SUNSET	
V2008			
Homes	10/31/16	6/30/21	
Existing Buildings: Operations and Maintenance	6/27/09	6/27/15	
V2009			
New Construction (and Italia NC)	10/31/16	6/30/21	
Core and Shell	10/31/16	6/30/21	

The Evolution of LEED: Where is it now?


v4 FOCUS ON PERFORMANCE

Global Adaptations

LEED v4 System Goals

Rating System Families

RATING SYSTEMS	LEED® for Building Design and Construction	LEED [®] for Interior Design and Construction	LEED® for Building Operations and Maintenance	LEED® for Neighborhood Development™
REFERENCE GUIDES		LEED Banare Banare Mana	NEE EE EN RE BELLEDING BELLEDING BELLEDING BELLEDING	REFERENCE REFERENCE REVELOPMENT
MARKET SECTOR ADAPTATIONS	New Construction Core and Shell Schools Retail Healthcare Data Centers Hospitality Warehouses and Distribution Centers Homes Multifamily Midrise	Commercial Interiors Retail	Existing Buildings Data Centers Warehouses and Distribution Centers Hospitality Schools	Plan Project

LEED Credit Library

COMMUNITY LEED	ADVOCACY INITIATIVES	Articles Directory	Courses Resources	Store Help SIGN IN
	0		Search the site	Q
Why LEED Rating syste	ms Certification Project Tools Credentials			CREDIT LIBRARY
FILTER CREDITS	New Construction		v4 draft	•
SMART FILTERS	Search credits			Q
Integrative process credits	Match all results Match any results			
Location & transportation	Name • contains •			•
Sustainable sites				Clear filters APPLY
Water efficiency	Integrative process			
Energy & atmosphere	IPc1(1 point			
Material & resources	LEED for Neighborhood Development	nt location		

LEED Documentation

Fewer Forms.

Reduced forms by 80% compared to LEED 2009 to improve system performance and consistency.

Alignment across rating systems Includes campus, multiple building, recertification

Fewer fields to document.

Removed low-value documentation requirements.

Removed required signatories Removed duplication of content

The New LEED Online

	ONLINE	A Theresa Backhus
Projects	Promo Test	
Promo Test		
Details Credits U	ploads Team Timeline Interpretations Clarifications	Registration Incomplete
Project details	A 9 /	The Certification Agreement for this project has
NAME	Promo Test	not been signed. You can sign this agreement if you are the owner or authorized by the owner to
REGISTRATION DATE	25 Apr 2009	do so.
PROJECT TYPE	Individual Project	SIGN NOW
RATING SYSTEM	LEED-EB:OM v2009	Terms and Conditions

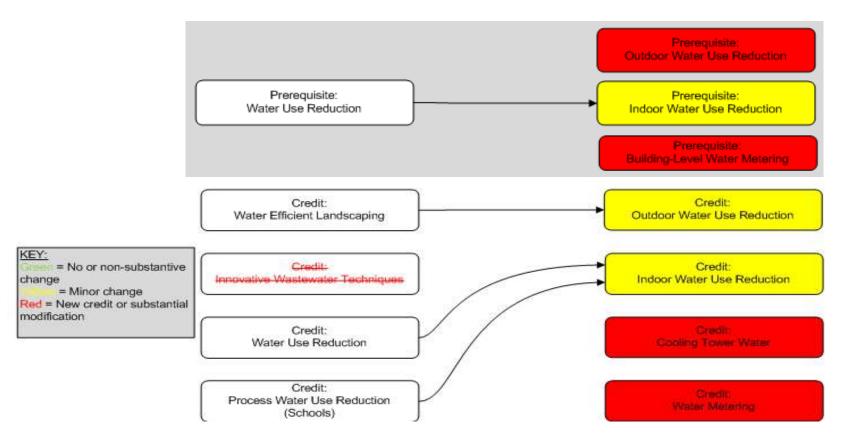
Credit Substitutions

LEED

 Published on 10 Jan 2014
 Written by Batya Metalitz
 Posted in LEED

Excited to start using LEED v4, but not sure you're ready to make the switch on your existing projects?

WATER EFFICIENCY Copyright © 2013 U.S. Green Building Council


LEED v4 Technical Improvements: WE

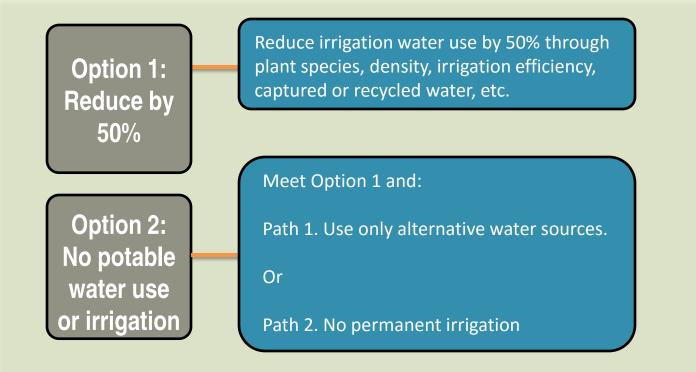
Addresses **more water uses** including fixtures & fittings, processes, appliances, cooling towers, and landscape water use.

Focuses on **measuring water use** through a new water metering prerequisite and credit.

Outdoor Water Use is now a **prerequisite** (in addition to the credit).

LEED v4 Technical Improvements: WE

WEp/c Outdoor Water Use Reduction (BD+C)


Option 1: No Irrigation Required

Option 2: Reduced Irrigation Show that the landscape does not require a permanent irrigation system beyond a maximum two-year establishment period.

Reduce the landscape water requirement (LWR) by at least 50% (30% prereq) from calculated baseline (first by plant selection and irrigation system efficiency via EPA WaterSense Water Budget Tool)

>30% reduction: use any combination of efficiency, alternative water sources, and smart scheduling technologies

2009 WEc1 Water Efficient Landscaping (BD+C)

WEc Outdoor Water Use Reduction (O+M)

Option 1: No Irrigation Required

Option 2: Calculated Water Budget

Option 3: Irrigation Meter Show that the landscape does not require a permanent irrigation system beyond a maximum two-year establishment period.

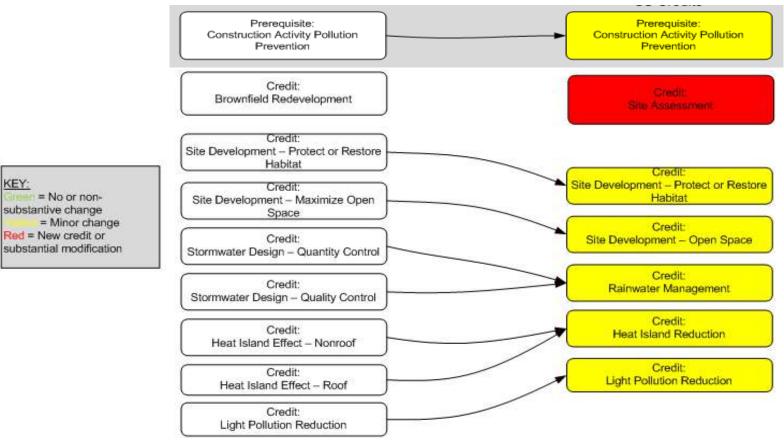
Use the existing landscape to calculate the LWR using the EPA WaterSense Water Budget Tool. Install an irrigation meter and demonstrate a reduction in water use.

Establish a baseline using the annual average of at least 3 years of consecutive data out of the last 5 years and demonstrate a reduction in water use over the most recent 12 months.

2009 WEc3 Water Efficient Landscaping (O+M)

Option 1: Baseline vs. Actual Option 2: Baseline VS. Estimated **Option 3:** Independent Tools

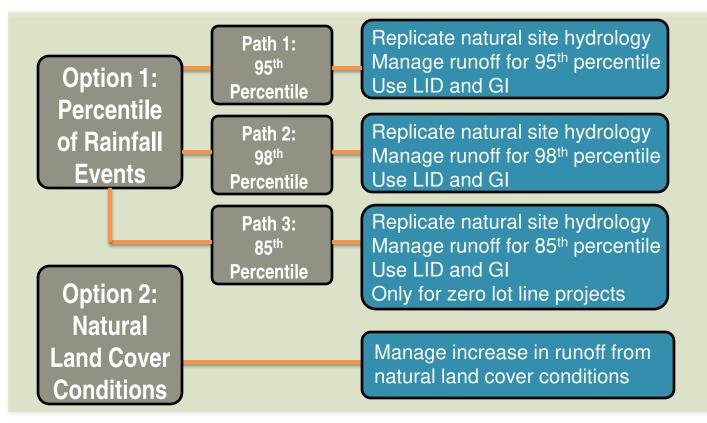
Calculate baseline and compare to metered irrigation water use.


Calculate baseline and compare to estimated irrigation water use. Determine ETO, species/ density/ microclimate factors. Calculate landscape coefficient and estimated water use.

Use local, regional, provincial, state, territorial or national performance or ranking tools to demonstrate reductions in water use.

SUSTAINABLE SITES Copyright © 2013 U.S. Green Building Council

LEED v4 Technical Improvements: SS



SSc Rainwater Management

Intent: To reduce runoff volume and improve water quality by replicating the natural hydrology and water balance of the site, based on historical conditions and undeveloped ecosystems in the region.

SSc Rainwater Management (BD+C)

Synergies with Other Credits

WEp/c: Water Metering: submeter irrigation water systems serving at least 80% of the irrigated landscaped area. Calculate the percentage of irrigated landscape area as the total metered irrigated landscape area divided by the total irrigated landscape area. Landscape areas fully covered with xeriscaping or native vegetation that requires no routine irrigation may be excluded from the calculation.

SSc Open Space: irrigation of qualifying vegetated open spaces

Synergies with Other Credits

WEc Total Water Use (Homes, Multifamily): use the EPA WaterSense Water Budget Tool to calculate the baseline landscape water consumption and the design landscape water consumption. Implement measures to further reduce landscape water consumption. Add the savings associated with the following measures to the reduction from the LWR: Install smart scheduling technology; captured rainwater; reclaimed water; water treated on site or conveyed by a public agency specifically for nonpotable uses

Synergies with Other Credits

SSp Site Management Policy (O+M): monitor irrigation systems manually or with automated systems at least every two weeks during the operating season for appropriate water usage, system times, leaks, or breaks)

SSc Heat Island Reduction: vegetated roof irrigation

SSc Site Improvement Plan (O+M): rainwater reuse opportunities, potable water-use reduction

LEED Outdoor Water Use Calculator

Landscape Water Requirement

Average monthly rainfall for the site's peak watering month (in/month)

2.88

Table: Landscape water requirement

Zone ID	Hydrozone or Landscape Feature Area (sq ft)	Plant Type or Landscape Feature	Water Requirement	Landscape Coefficient (K _L)	Irrigation Type	Distribution Uniformity (DU _{LQ})	LWH _H (gal/month)
1	7,800	Turfgrass	High	0.8	Micro spray	70%	50,098
2	1,500	Groundcover	Low	0.2	No irrigation	N/A	0
3	1,500	Shrubs	Medium	0.5	Drip (press comp)	90%	4,233
4	1,000	Trees	Low	0.2	No irrigation	N/A	0
5	396	Trees	Medium	0.5	No irrigation	N/A	0
							0
							0
							0
							0
							0
Total hydro	zone or landscape	feature area (sq ft)					12,196
Landscape water requirement based on the site's peak watering month (gal/month)					54,332		

Add Rows

Delete Rows

LEED Outdoor Water Use Calculator

Summary Note: All information on this tab is READ-ONLY. To edit, see previous tabs.		
Landscape water allowance (LWA) (gal/month)	34,694	
Landscape water requirement (LWR) (gal/month)	54,332	
Percentage reduction from baseline (%)	-57%	Must be at least 30%

EPA WaterSense Water Budget Tool

ation STEP 3 The Results

Fill out the chart below with all the appropriate information to calculate your landscape's water needs.

Zone	Area ⁱ (sq. ft.)	Plant Type / 3 Landscape Feature	Water ⁱ Demand	i Irrigation Type	Impact on ⁱ Water Use	Required Water (gal/month)
× 1		*	-	•		4
× 2		-		~		
× З		-	•	-		
× 4		-	•	-		
× 5		•	•			
× 6		-	• • • •		1	
	Total: 0					
+ ad	d zone					
	000 ning Area)	42,802 Water Allowance (gal/month)	O Total W the Site	/ater Requirement for	42,802 Below Allowance (gal/month)	NEXT STEP >

LEED Outdoor Water Use Form

WE Prerequisite Outdoor Water Use Reduction WE Credit Outdoor Water Use Reduction

Select one of the following:

- Option 1. No irrigation required (0-2 points)
- Option 2. Reduced irrigation (0-2 points)

Option 2. Reduced Irrigation

Upload: EPA WaterSense Tool or Outdoor Water Use Reduction Calculator

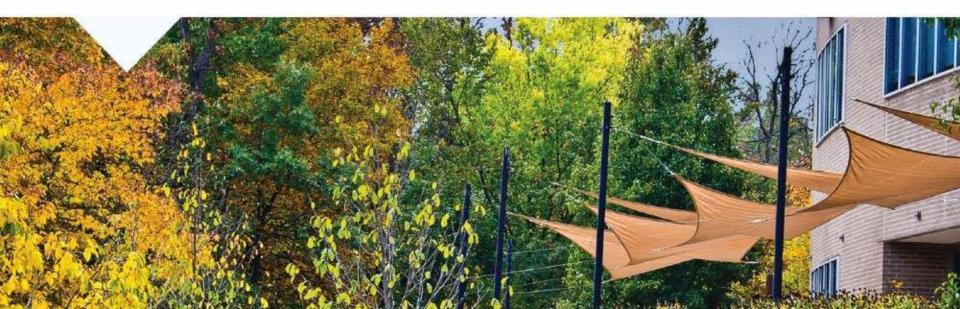
Provide the completed EPA WaterSense Water Budget Tool (accessible at epa.gov/watersense/water_budget) OR Outdoor Water Use Reduction Calculator (found under the prerequisite's "Resources" tab in the Credit Library).

The EPA WaterSense Water Budget Tool only accommodates zip codes in the U.S. or Canada.

The Evolution of LEED: Where is it going?

PROVEN PERFORMANCE

Upcoming Changes and Additions


Whole Project Water Use Reduction Pilot Alternative Compliance Path: measure the baseline water use of the entire project (including irrigation) and demonstrate a reduction. Replaces most credits in the WE category.

Green Walls: inclusion of exterior green walls in calculations.

Water Quality Pilot Credit: especially important outside of the U.S. India and Mexico have proposed requirements for consideration.

Sustainable SITES Initiative

The **Sustainable Sites Initiative (SITES®)** offers a systematic, comprehensive rating system designed to define sustainable sites, measure their performance, and ultimately elevate the value of landscapes. Administered by GBCI, the SITES rating system can apply to development projects located on sites with or without buildings, including open spaces, streetscapes and plazas, commercial, residential, educational/ institutional, infrastructure, government, military and industrial.

The LEED[®] Dynamic Plaque[®] is a building performance monitoring and scoring platform for LEED-certified projects, providing annual LEED recertification and global benchmarking. The plaque displays a LEED performance score, which reflects the measured performance of the building across five categories: energy, water, waste, transportation and human experience. The LEED Dynamic Plaque makes the invisible actionable and offers a means for interaction with the building on multiple levels.

Resources

www.usgbc.org/pilotcredits

www.gbig.org/

www.sustainablesites.org

www.leedon.io

www.leeduser.com

www.usgbc.org/credits

www.usgbc.org/leed/v4

www.usgbc.org/leedonline

www.usgbc.org/sampleforms

www.usgbc.org/leed-interpretations

Thank you!

Theresa Backhus USGBC tbackhus@usgbc.org

ASIC 2016 REGIONAL CONFERENCES

John Farner

ASIC 2016 REGIONAL CONFERENCES

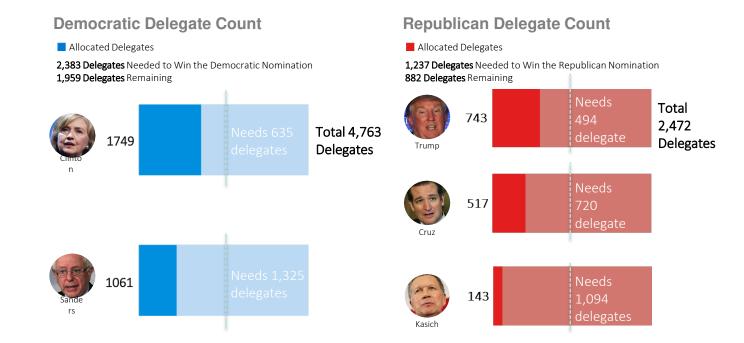
Southeast, Southwest, Northeast, & California

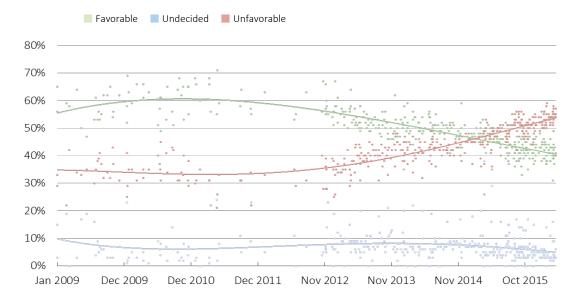
American Society of Irrigation Consultants

Smart Practices. Sustainable Solutions.

Regulating Irrigation


The centuries old battle over water has just begun...


Let's talk politics...


*Delegate count as of April 8, 2016

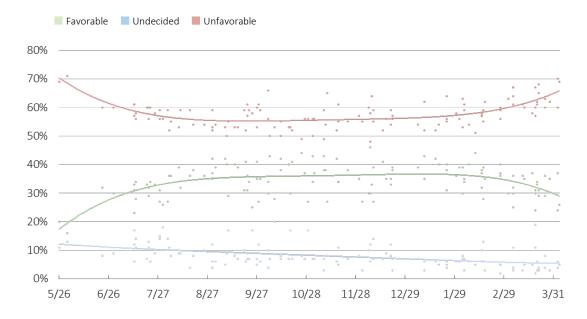
Hillary Clinton's Favorability Has Declined Since 2011

Jan 2009 - Apr 2016 Hillary Clinton Favorability Ratings


- Hillary Clinton's favorability has steadily declined over the past few years
- She has been more unfavored than favored since mid-2015

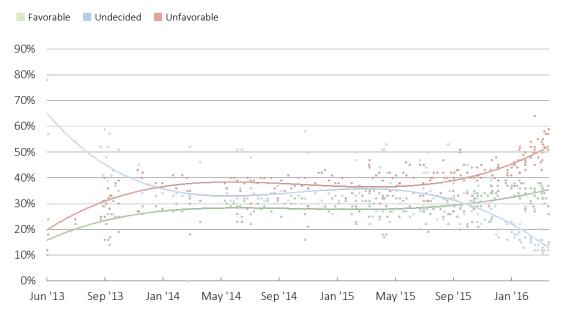
Bernie Sanders' Favorability Has Consistently Risen Since March 2015

Mar 2015 – Apr 2016 Bernie Sanders Favorability Ratings


- Sanders' favorability has steadily increased since March 2015
- The percentage of people undecided about Sanders has dropped significantly as he became more well known over the course of his campaign
- The percentage of people who see Sanders unfavorably has also risen, but Sanders has generally been seen more favorably than unfavorably since July 2015

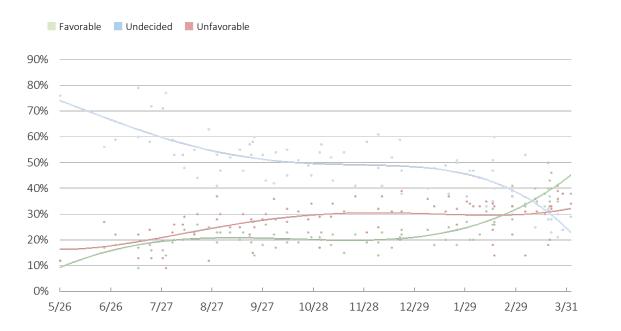
Donald Trump's Favorability Has Decreased in Recent Months

May 2015 - Apr 2016 Donald Trump Favorability Ratings


- Donald Trump has consistently been more unfavored than favored since May 2015
- Over the past few months, his favorability rating has decreased and his unfavorability rating has increased

Ted Cruz Has Been More Unfavored than Favored Throughout His Tenure as Senator

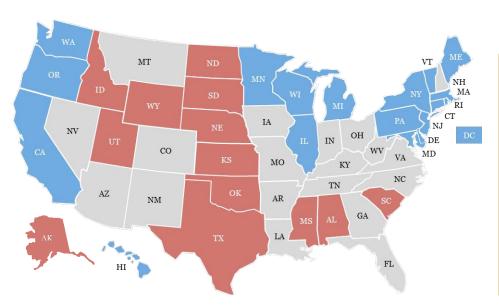
June 2013 – Apr 2016 Ted Cruz Favorability Ratings


- Ted Cruz has always been more unfavored than favored, since June 2013
- While his favorability has slightly increased over the past few months, his unfavorability rating has also increased

John Kasich's Favorability Has Risen Since January 2016

May 2015 – Apr 2016 John Kasich Favorability Ratings

- John Kasich has had a higher favorable rating than unfavorable rating since the end of January
- His favorability rating has risen, while his unfavorable rating has mostly stayed the same


2016 Election Calendar

Election Date Debate								FEC Deadline Convent													
March						April						May									
		1	2	3	4	5						1	2	1	2	3	4	5	6	7	Mar. I: Caucuses (AK GOP, CO Dem., CO GOP, MN, ND GOP, WY GOP)
6	7	8	9	1	1	1 2	3	4	5	6	7	8	9	8	9	1	1	1	1	1	Primaries (AL, AR, GA, MA, OK, TN, TX, VT, VA) Mar. 3: Fox News GOP Primary Debate
1	1	1	1	1	1	1	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1	1	1	1	1	2	2	Mar. 5: LA Primary, GOP Caucuses (KY, ME, KS), Dem. Caucuses (KS, N
3	4	5	6	7	8	9	1	1	1	2	2	2	2	5	6	7	8	9	0	1	Mar. 6: ME Dem. Caucus, PR GOP Primary, Democratic Primary Debate Mar. 8: Primaries (MI, MS, ID Rep.), HI GOP Caucus
2	2 1	2	2 3	2 4	2 5	2 6	7	8	9	0	1	2	3	2 2	2 3	2 4	2 5	2 6	2 7	2 8	Mar. 9: Univision/The Washington Post Democratic Primary Debate
.Þu	ne	2	3	3			2 . J 4u	2 1 V ⁵	2 6	2 7	2 8	2 9	3 0	<u>A</u> 211	gus	1 ³					Mar. 10: CNN/Salem Radio GOP Primary Debate Mar. 15: Primaries (IL, MO, FL, NC, OH), MP GOP caucus
7	0	0	1	2	3	4	0	- J				1	2	- 9-	80	1				_	Mar. 22: AZ Primary, Caucuses (ID Dem., UT Dem., UT Rep.)
5	6	7_	8	9	1	1	3	4	5	6	7	8	9	7	8	9	1	1	1	1	Mar. 26: Dem. Caucuses (AK, HI, WA)
	-				0	1	1	1	1	1	1	1	1	,			0	1	2	3	Apr. 5: WI Primary Apr. 9: WY Dem. Caucus
1	1 3	1 4	1 5	1 6	1 7	1 8	0	1	2	3	4	5	6 2	1 4	1 5	1 6	1 7	1 8	1 9	2 0	Apr. 14: CNN/NY1 Democratic Primary Debate *RECENTLY ADDED*
1	2	2	2	2	2	2	7	8	9	0	1	2	3	2	2	2	2	2	2	2	Apr. 15: FEC Filing Deadline Apr. 19: NY Primary
2	0	¹ m ² b	-	3	4	5	2	2 5 5 b	2	2	2	2 9	3 0	1 Ní o	veı	o an fhu	4	2	0	/	Apr. 26: Primaries (CT, DE, PA, MD, RI)
6	p ee		9	0			3		er			-	-	8	9	0					May 3: IN Primary
				1	2	3	1	2	4	c	6	7	0			1	2	3	4	5	May 10: Primaries (NE GOP, WV) May 17: Primaries (KY Dem., OR)
4	5	6	7	8	9	0		1	4	1	1	1	0	6	7	8	9	0	1	2	May 24: WA GOP Primary
1	1 2	1	1 4	1 5	1 6	1 7	9	0	1	2	3	4	1 5	1	1	1	1	1	1	1	June 7: Primaries (CA, MT, NJ, NM, SD), ND Dem. Caucus
1	1	2	2	2	2	2	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2	2	2	2	2	2	2	June 14: DC Dem. Primary June 28: UT Primary
8	9	0	1	2	3	4	2	2	2	2	2	2	2	0	1	2	3	4	5	6	July 15: FEC Filing Deadline
<u>1</u> 2) (6 C	m2b 7	e 1 <u>3</u> 8	2 9	3 0		3	4	5	6	7	8	9	2 7	2 8	2 9	3 0				July 18-21: Republican Nat'l Convention (Cleveland, OH) July 25-28: Democratic Nat'l Convention (Philadelphia, PA)
							3 0	3 1													Sept. 26: First Presidential Debate
4	5	ь	/	8	У	0															Oct. 4: Vice Presidential Debate
1	1	1	1 4	1	1 6	1 7															Oct. 9: Second Presidential Debate
1	1	2	2	2	2	2															Oct. 15: FEC Filing Deadline Oct. 19: Third Presidential Debate
8	9	0	1	2	3	4															Nov. 8: Election day
2 5	2 6	2 7	2 8	2 9	3 0	3 1	Prin	nary	Debo	ate S	ched	lules	," Ma	arch :	16, 2	015;	Fror	itloa	ding	ΗQ,	"The 2016 Presidential Primary Calendar," 2016.
							Luck			and	Chari	- 4 1									

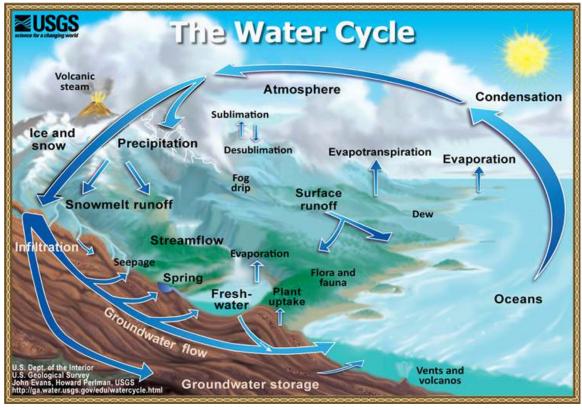

Based on Past Presidential Elections, Democrats May Hold a Slight Advantage Heading into 2016 General Election

States That Voted Consistently in the Past Six Presidential Elections

Voted Republican every election since 1992 Voted Democratic every election since 1992

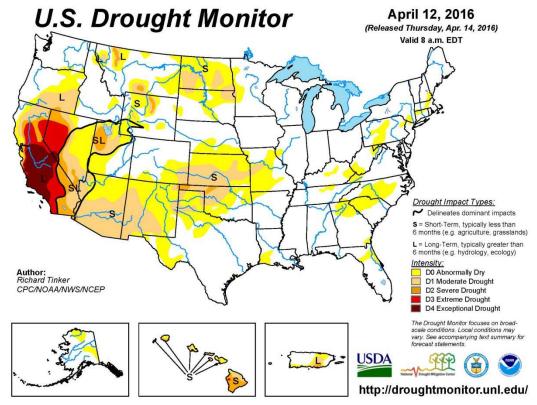
Share of Electoral Votes Historically Won by Democrats and Republicans since 1992

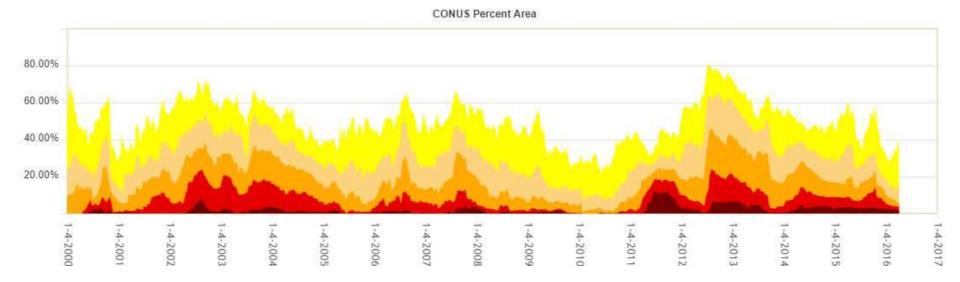
270 needed to win presidential election

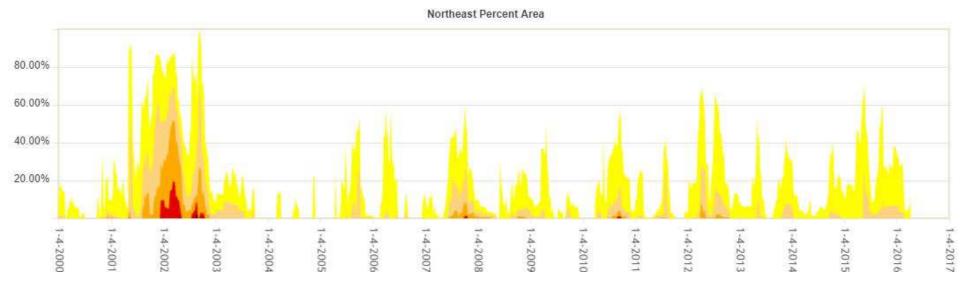

Analysis

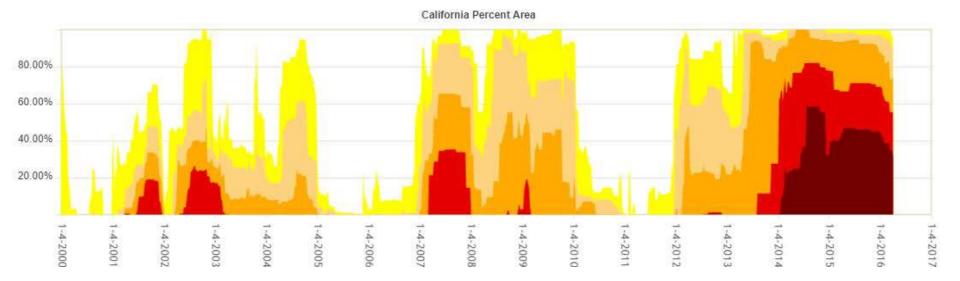
- Democrats won 18 states plus the District of Columbia six times in a row, which in 2016 would earn
 242 electoral votes, about 90 percent of the 270 electoral votes needed to win.
- In contrast, Republicans consistently carried 13 states over the last six elections, which in 2016 would earn the party 102 electoral votes, 38 percent of the 270 needed to win.
- For more information on the political climate of the presidential primary, read <u>Charlie Cook's</u> <u>analysis</u>.

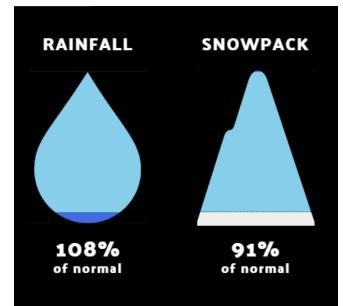
Sources: Archives.gov, "US Electoral College"; National Journal, Charlie Cook, "Is Clinton's Tide Shifting?"; Politifact.com, "18 States Have Voted Democratic in Six Consecutive Elections with 242 Electoral Votes, George Will Says"

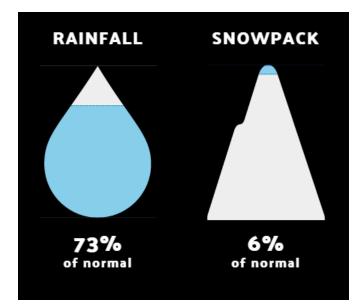




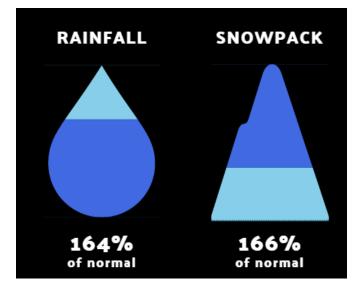




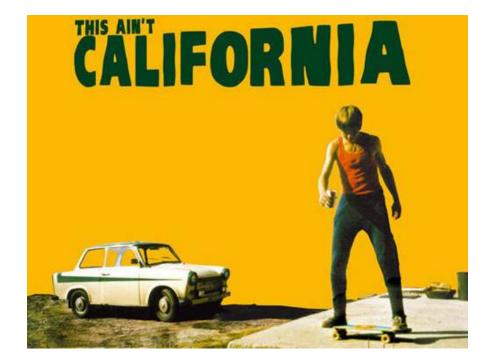



April 4, 2016

April 14, 2015



1997-1998 El Nino


Fuse lit: April 1, 2015 – Executive Order on Drought from Governor Jerry Brown

2015: Updates to Model Water Efficient Landscape Ordinance Completed

2016: California Water Plan Updated



Who is driving the future?

Market Trends

- Native-type landscapes that won't require irrigation.
- Minimal turf grass areas.
- No potable water for irrigation.

Voluntary

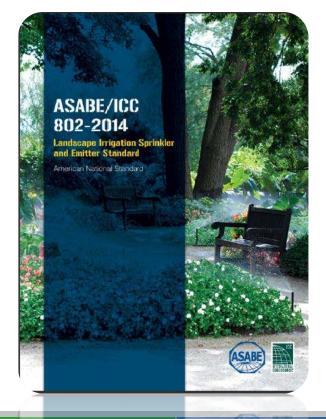
Irrigation BMPs

BMP & Practice Guidelines

Design

Installation

Management


Appendices

Inspection & Commissioning Water Budgeting Scheduling

Tests—Sprinklers & Bubblers Flow Rate Distance of Throw Distribution Uniformity Burst Pressure Check Valve Pressure Regulation

Tests—Emitters and Microsprays Uniformity of flow rate Flow rate as a function of pressure Emitter exponent for PC emission devices Check valve function

Standards in Progress

- ASABE S626 20 Landscape Irrigation System Uniformity and Application Rate Testing
- ASABE S627 20 Weather-based Landscape
 Irrigation Control Systems
- Both are out for public comment to ASABE
- ASABE S633 draft Soil Moisture Sensor for Landscape
 Irrigation in beta testing

Codes

- Shift to write standards in mandatory language.
- Adopted by code setting bodies or rating systems
- ICC, IAPMO, CalGreen

Observation

- Efficiency = reduction or elimination
- Assumes no benefit comes from plants
- Natives are superior
- No points for superior irrigation systems
- No follow up to the water budget

Strategy

- Use of BMP document
- IA has written a model landscape irrigation ordinance
 - Works with existing landscape ordinances
 - Modify for local circumstances
- Separate landscape issues from irrigation issues

Marigation Association - The X Model Irrigation Ordinance X

• 🤿 C 🐔 🗋 www.irrigation.org/modelordinance.aspx

Hops For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

Water resources are increasingly targets of legislation and regulation. IA provides a powerful ally to represent and protect your interests, nationally and locally.

Home > Policy > Public Policy Issues > Model Irrigation Ordinance

POLICY

Grassroots Advocacy State Legislative Tracking

Legislative Coordinators

Position Statements

Public Policy Issues

California Drought

Clean Water Act

Farm Bill

Product Labeling

Research

Restrictions &

Regulations

WaterSense

Model Irrigation

Public Policy Issues

Model Irrigation Ordinance

Version 1.0 of the model irrigation ordinance, released on October 5, 2015, provides design parameters for new landscape irrigation systems and guidelines for existing irrigation systems. The ordinance works in conjunction with established landscape codes/ordinances and can be modified to meet local needs. In addition to the model irrigation ordinance, sample reports and checklists are available below.

- Model Irrigation Ordinance
- Irrigation Inspection Affidavit
- Example Irrigation Plan Checklist
- Certifier Report

If you have questions, please contact IA Government and Public Affairs Director John Farner at <u>johnfarmer@irrigation.org</u> or IA Senior Policy and Advocacy Manager Elizabeth McCartney at <u>elizabethmccartney@irrigation.org</u>

- § 4.0 Irrigation Design Plan.
 - (a) This section applies to landscaped areas requiring permanent irrigation. For the efficient use of water, an irrigation system shall be planned and designed according to the most current version of the Landscape Irrigation Best Management Practices, by the Irrigation Association and the American Society of Irrigation Consultants.
- (b) An irrigation design plan meeting the following design criteria shall be submitted for review and approval by the jurisdiction having authority and a permit issued if required.
- 8 (1) Plan requirements:

2

3

4 5

12

18

21

- 9 (a) The irrigation design plan, at a minimum, shall contain:
- 10 (1) a scaled plan showing property lines, easements, existing or proposed structures, 11
 - impervious surfaces, and existing natural features and if a new landscape project then consistent with the approved landscape plan;
- 13 (2) location and size of the point of connection to the water supply and meter locations
- 14 along with static water pressure at the point of connection to the water supply and
- 15 dynamic water pressure for proper system operation;
- 16 (3) reclaimed/recycled water or alternative water sources such as gray water shall 17 comply with local plumbing codes including marking of pipes and system components;
 - (4) location, type and size of all components of the irrigation system, including, backflow
- 19 preventer, smart irrigation controllers, main and lateral lines, manual valves, remote 20
 - control valves, sprinkler heads, moisture sensing devices, rain switches, quick couplers, pressure regulators;
- 22 (5) an irrigation legend showing the identification of irrigation components:
- 23 (6) flow rate (gallons per minute), application rate (inches per hour), and design
- 24 operating pressure (pressure per square inch) for each irrigation zone;
- 25 (7) installation details for each of the irrigation components.
- 26 (b) Designer statements and signature:
- 27 (1) the following statement: "I have complied with the criteria of the ordinance and 28 applied them accordingly for the efficient use of water in the irrigation design plan"; and
- 29 (2) the signature of a qualified irrigation professional such as licensed landscape
- 30 architect with irrigation credentials, certified irrigation designer, licensed/certified
- 31 landscape contractor, or any other person authorized to design an irrigation system 32
- within the jurisdiction.
- 33 (2) Irrigation system requirements:
- 34 (a) Backflow prevention devices shall be required to protect the potable water supply from 35 contamination by the irrigation system and comply with local plumbing codes.
- 36 (b) Manual shut-off valves (such as a gate valve, ball valve, or butterfly valve) shall be 37 required, as close as possible to the point of connection of the water supply and to

Concern

- Lack of understanding that plants provide and create ecosystem services that gets more valuable with time.
- Benefits are enhanced with actively growing plants—they need water.

Support of the initiative... Authorization – Congressional (in)Action Products Sprinklers

Sprinklers Soil moisture- based irrigation controllers Incentives

State incentives and federal tax exemption

Interpretations of Clean Water Rule by the EPA and Opposing Groups

Role	EPA Interpretation	Opposing Groups Interpretation	Takeaway
Purpose of Rule	Clarifies which waters fall under Clean Water Act (CWA) jurisdiction by adding site-specific information to definitions; for example, seasonal streams are defined as sites that have water beds, banks, and high water marks	Expands CWA jurisdiction over waters by adding site-specific information to definitions; for example, seasonal streams are defined as all sites with seasonal water flow	The EPA characterizes the CWA Rule as clarifying the CWA's jurisdiction, but many opposing groups characterize it as expanding the CWA's jurisdiction
Scope of Rule	Scope unchanged; rule merely clarifies definitions of waterways already under CWA jurisdiction	Scope increases; rule would subject 3% more of U.S. waters to CWA jurisdiction	Many groups are debating the CWA's scope under the rule; the EPA maintains the rule will not expand CWA jurisdiction, but opposing groups fear the rule will bring more waters under CWA authority
Rule's Impact on Private Sector	Minimal impact; for example, rule identifies 50 agriculture conservation practices that will not be subject to clean water dredge and fill permitting requirements	Major impact; for example, rule expands CWA jurisdiction to ephemeral waters often found on agricultural and industrial sites	Most private sector groups expect increased compliance costs under the rule

"Waters of the U.S." in New York Farmland

Maps by Geosyntec Analysis by American Farm Bureau Federation

Area of focus is near Hurley, New York in Ulster County.

Automatically Regulated "Tributaries"

Perennial, intermittent and **ephemeral** tributaries and adjacent wetlands all deemed jurisdictional without further analysis. (Under prior rules, only perennial and intermittent tributaries were jurisdictional without caseby-case analysis.) Ditches also regulated if "excavated in" or "relocated" a tributary. This map does not show smaller ditches that may be jurisdictional. (Note: light blue shapes designate freshwater ponds, dark blue shapes designate lakes, aqua blue shapes designate riverine, green shapes designate wetlands.)

Automatically Regulated Adjacent Waters

Includes all "waters"—including wetlands—that lie even partially within a 100-foot buffer (pink shading) around all perennial, intermittent and ephemeral tributaries.

Automatically Regulated Adjacent Waters

Includes all "waters"—including wetlands—where <u>any part</u> is within the 100-year floodplain and not more than 1,500 feet from a tributary. Light green shading shows the 1,500-feet zone and hash marks show the known FEMA 100-year flood zone (which may be out-of-date or may not be relied upon by the Corps). **Absent definitive flood zone information from the Corps, any water partially within the light green shading is a possible "adjacent water."**

Maybe Regulated "Significant Nexus" Waters

Water/wetlands even partially within 4,000 feet (about ¾ mile) of a tributary can be regulated on a "significant nexus" finding. Orange shading shows land outside the possible adjacency zone but within the 4,000 feet zone. **Even without mapping smaller jurisdictional ditches, the area of possible regulation covers the entire map.**

Area of focus is near Scipio, New York in Cayuga County.

Automatically Regulated "Tributaries"

<u>Perennial, intermittent and **ephemeral** tributaries</u> and adjacent wetlands all deemed jurisdictional without further analysis. (Under prior rules, only perennial and intermittent tributaries were jurisdictional without case-by-case analysis.) Ditches also regulated if "excavated in" or "relocated" a tributary. This map does not show smaller ditches that may be jurisdictional. (Note: light blue shapes designate freshwater ponds, green shapes designate wetlands.)

Automatically Regulated Adjacent Waters

Includes all "waters"—including wetlands—that lie even partially within a 100-foot buffer (pink shading) around all perennial, intermittent and ephemeral tributaries.

Automatically Regulated Adjacent Waters

Includes all "waters"—including wetlands—where <u>any part</u> is within the 100-year floodplain and not more than 1,500 feet from a tributary. Light green shading shows the 1,500-feet zone and hash marks show the known FEMA 100-year flood zone (which may be out-of-date or may not be relied upon by the Corps). **Absent definitive flood zone information from the Corps, any water partially within the light green shading is a possible "adjacent water."**

Maybe Regulated "Significant Nexus" Waters

Water/wetlands even partially within 4,000 feet (about ¾ mile) of a tributary can be regulated on a "significant nexus" finding. Orange shading shows land outside the possible adjacency zone but within the 4,000 feet zone.

Even without mapping of all jurisdictional ditches, the area of possible regulation covers the entire map.

Area of focus is near Mapleton, New York in Niagara County.

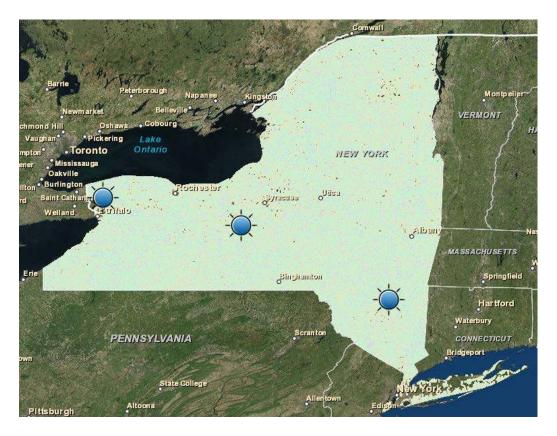

New WOTUS Rule – More Automatically Regulated "Tributaries"

<u>Perennial, intermittent and **ephemeral** tributaries</u> and adjacent wetlands all deemed jurisdictional without further analysis. (Under prior rules, only perennial and intermittent tributaries were jurisdictional without case-by-case analysis.) Ditches also regulated if "excavated in" or "relocated" a tributary. This map does not show smaller ditches that may be jurisdictional. (Note: light blue shapes designate freshwater ponds, green shapes designate wetlands.)

Automatically Regulated Adjacent Waters

Includes all "waters"—including wetlands—that lie even partially within a 100-foot buffer (pink shading) around all perennial, intermittent and ephemeral streams.

Automatically Regulated Adjacent Waters


Includes all "waters"—including wetlands—where <u>any part</u> is within the 100-year floodplain and not more than 1,500 feet from a tributary. Light green shading shows the 1,500-feet zone and hash marks show the known FEMA 100-year flood zone (which may be out-of-date or may not be relied upon by the Corps). **Absent definitive flood zone information from the Corps, any water partially within the light green shading is a possible "adjacent water."**

Maybe Regulated "Significant Nexus" Waters

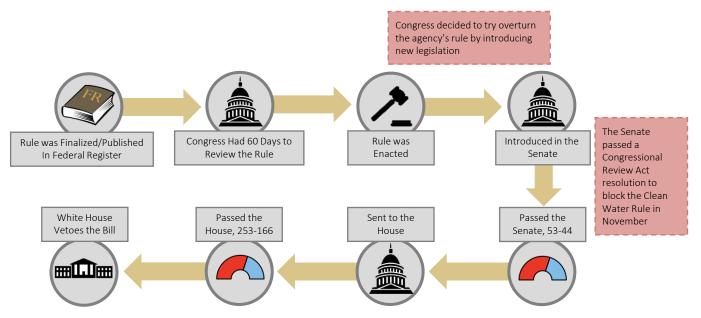
Water/wetlands even partially within 4,000 feet (about ¾ mile) of a tributary can be regulated on a "significant nexus" finding. Orange shading shows land outside the possible adjacency zone but within the 4,000 feet zone.

Even without mapping around all jurisdictional ditches, the area of possible regulation covers the entire map.

The scope of the final rule's impact in the focus area is similar to the rest of the state

What Activities May Trigger CWA Liability and Permit Requirements?

- The application from a mechanical applicator (sprayer/spreader/nozzle) of any "pollutant" in any amount into a WOTUS requires a section 402 NPDES permit issued by state regulatory agencies or directly from EPA. A permit is required even if the WOTUS is dry at the time of application. Pollutants include, among other things:
 - chemical or biological pesticides (herbicides, insecticides, fungicides and coated seeds)
 - fertilizers (nitrogen, phosphorus, potassium and micro nutrient)
 - manure and manure products (including compost)
- A discharge of "dredged or fill material" can occur as a result of farming or ranching activities that involve moving dirt in a WOTUS. These discharges require a section 404 "dredge and fill" permit issued by the Corps of Engineers (again, even if the feature is dry at the time)—unless the activity qualifies for an exemption explained below. Possibly regulated activities include:
 - manipulating the soil on a field, such as grading, laser leveling, terracing, plowing, deep ripping, etc.;
 - construction and maintenance of roads, fences, ditches, ponds and culverts.
- Congress established several exemptions from the section 404 "dredge and fill" permit requirement. Under these
 exemptions, farmers and ranchers may not need a permit for plowing, seeding, cultivating, and harvesting (defined
 as "normal" farming practices), or for certain other activities like minor drainage, upland soil and water
 conservation practices, drainage ditch maintenance, construction and maintenance of irrigation ditches,
 farm/stock ponds, farm/forest roads and maintenance of levees/dams.


It is very important to understand that the Corps of Engineers has interpreted these exemptions *very narrowly* and its interpretations will generally be controlling in any enforcement action. As a result, many common farming practices that involve moving dirt in a WOTUS will NOT qualify for an exemption and will trigger a need for a 404 permit.

"Waters of the U.S." Zones in New York

New York	Acres	Share of Total Acres
Total Acres in State	31,079,144	
Total Acres w/i 4,000- foot buffer	30,458,484	98%
Total Acres w/i 1,500- foot buffer	24,225,363	78%
Total Acres w/i 100-foot buffer	2,317,069	7%

President Obama Vetoes Congress' Attempt to Kill the Clean Water Rule

Steps for "Waters of the United States" Rule Submitted by the Environmental Protection Agency and the Corps of Engineers

Source: Devin Henry, "House to Take Up Bill Blocking EPA Water Rule," The Hill, January 7, 2016; Timothy Cama, "House Votes to Overturn Obama's Water Rule," The Hill, January 13, 2016; Gregory Korte, "Obama Vetoes Attempt to Kill Clean Water Rule," USA Today, January 19, 2016.

Realities

- 1) Policymakers' involvement in the landscape irrigation industry will increase, not decrease
- 2) Landscape water use will be reduced (mandated)
- 3) Potable water will not be the main source for irrigation water
- 4) Landscapes will not look the same 10 years from know as they do today
- 5) Our industry needs to partner with governments and other stakeholders to form sustainable solutions

Oxygen. Food. Life. **John Farner** Just add water. **Irrigation Association** Government and Smart practices. Sustainable solution: **Public Affairs Director** johnfarner@irrigation.org

Stacy Bonos

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

RUTGERS

New Jersey Agricultural Experiment Station

What's Happening in Turfgrass Research?

Stacy A. Bonos, Ph.D.

Dept of Plant Biology and Pathology New Jersey Agricultural Experiment Station 2016 ASIC Northeast Regional Conference, April, 21, 2016

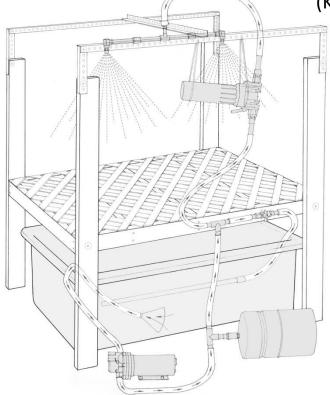
The Changing Climate

- Variable weather patterns
 - Higher temperatures and drought stress
 - Polar vortex during winters
- Results in additional stresses on turfgrasses including additional and more intense disease/insect outbreaks
- Need to develop turfgrasses that can tolerate these temperature extremes and related stresses

EVALUATION OF THAN NORE THAN MORE THAN

BeeSafe.[®] Play safe. Organic lawncare.

Turfgrass Breeding Objectives


- Drought
- Heat
- Diseases
- Salinity
- Low Maintenance

Breeding for Salt Tolerance

Greenhouse Screening Technique

(Koch and Bonos, Crop Sci. 2010)

Results

(10 weeks)

Treatment 1 (Control)

EC = 1

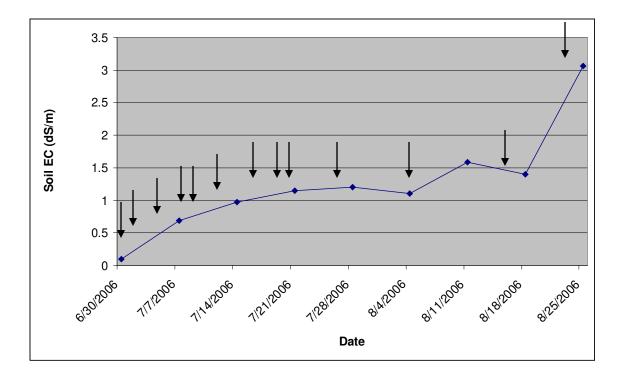
Treatment 4 EC = 15 dS/m

Hydroponic Greenhouse Method

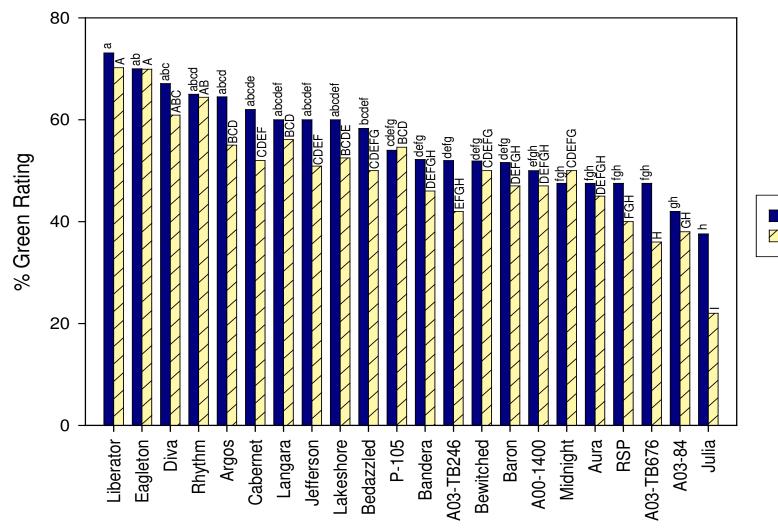
Field Method

- Salt solution is made from NaCl and CaCl
- Solution: EC = 10 dS/m
- 0.125 gallons / plant
 - Flowmeter is used
 - 3 times / week
- Weekly soil tests
- % Green ratings (1-10 scale)

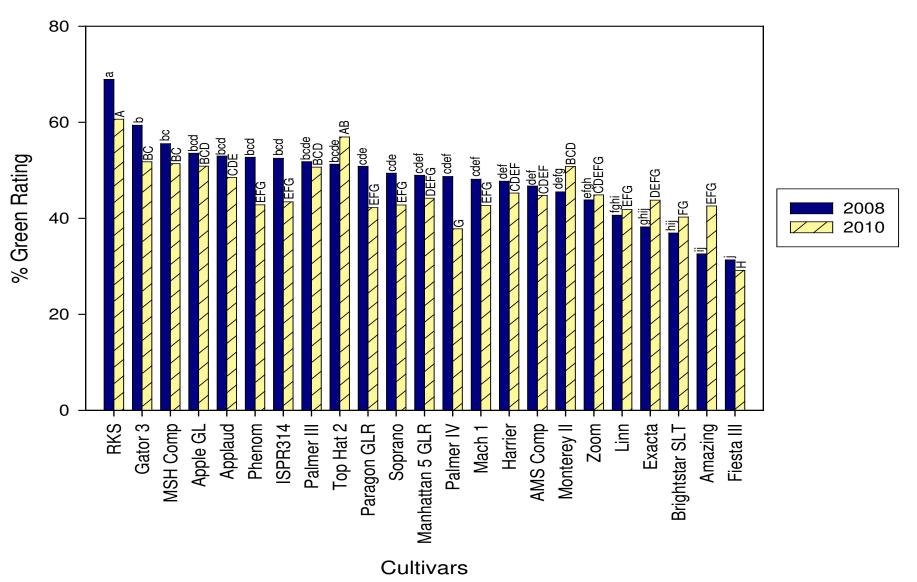
Salt Stress Injury



Soil EC of Kentucky Bluegrass Treated with Salt Solution

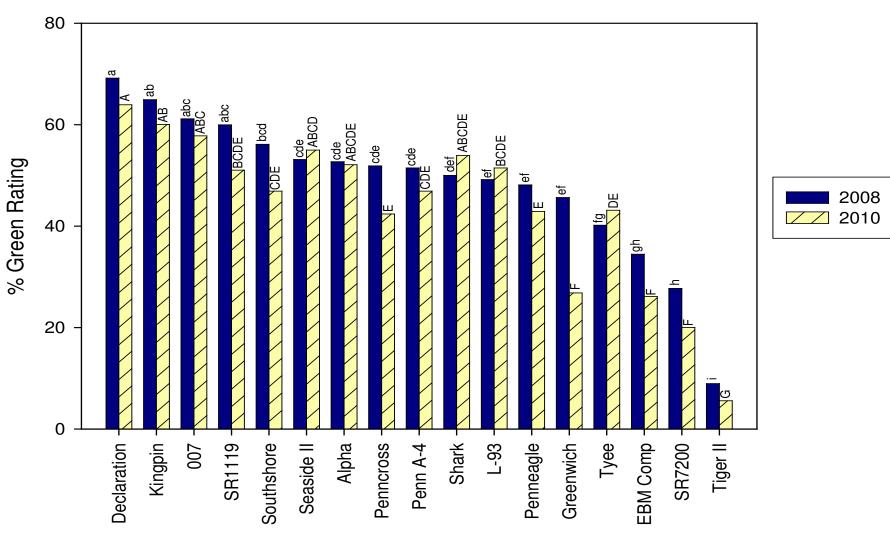

Field Screening of Kentucky Bluegrass for

Kentucky Bluegrass Cultivar Rankings


2008

2010

Cultivars


Perennial Ryegrass Cultivar Rankings

Salt Tolerance of Bentgrasses

Bentgrass Cultivar Rankings

Cultivars

Germination Salinity Tolerance

Germination Tolerance to Salinity

- Cultivars with quick germination also those that germinate quickly under salinity
- No cultivar by treatment interaction

Potential Grasses for Low Maintenance

Colonial bentgrass

Fine fescues
Tall fescue

Kentucky bluegrass

Turfgrasses for Low Maintenance

- Kentucky bluegrass requires more fertility than other species - 1.5/ 2.0 lbs N/1000 each year
- Other species fine fescues/tall fescues -1.0 lb N/1000
- No fungicides
- No supplemental irrigation
- Mowed weekly with Toro Groundsmaster
 2.5 inches

No Mow Hard Fescue

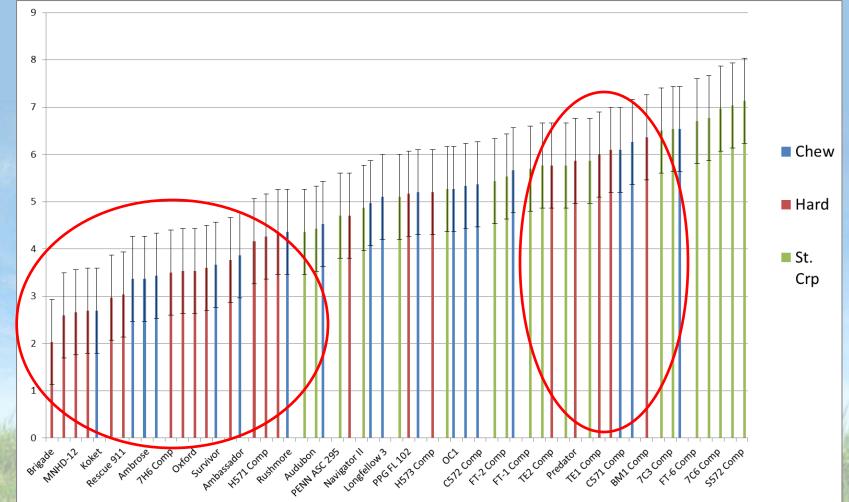
Hudson National golftripper.com

Hard Fescue – Drought Tolerant

Summer Patch of Hard Fescue

Germplasm Improvement of Low-Input Fine Fescues in Response to Consumer Attitudes and Behaviors

USDA-NIFA , Specialty Crop Research Initiative award number 2012-51181-19932.

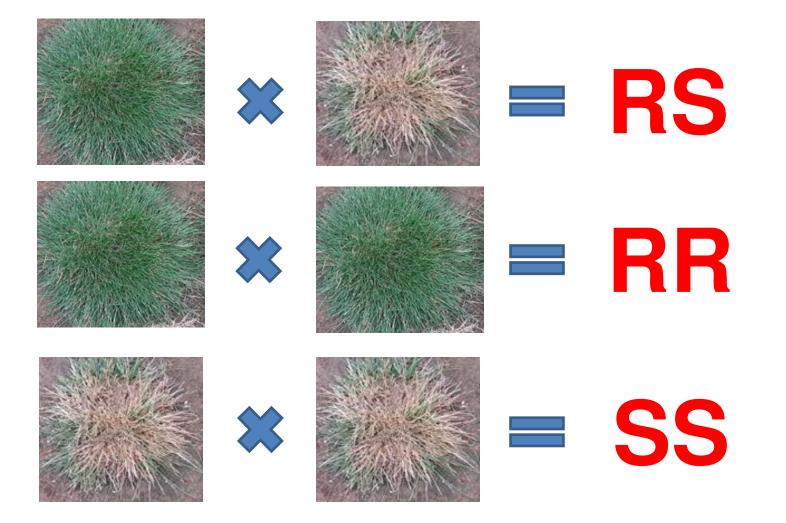

Eric Watkins, Chengyan Yue, Kristen Nelson, Brian Horgan University of Minnesota Paul Koch, University of Wisconsin Stacy Bonos, William Meyer, James Murphy, Bruce Clarke, Bingru Huang Rutgers University

Germplasm Improvement of Low-Input Fine Fescues in Response to Consumer Attitudes and Behaviors.

- Collaborative Project Univ. of Minn, Rutgers, Univ. of Wisc.
- Breeding and evaluation of fine fescues for improved quality, disease resistance, heat and drought tolerance, wear tolerance
- Marketing, Social and Extension Components

Fine Fescue Turf Quality in Presence of Summer Patch Disease

1-9 scale, 9= least disease


Tiller Plots

Spaced-plant nurseries inoculated with summer patch disease

Diallel Crossing

Seedlings

Wear Tolerance of Fine Fescues

Low Maintenance Kentucky Bluegrass Test 2013

2013 Kentucky Bluegrass A-List 2014-15 Turf Quality Ratings

Rank	Entry	Turf Qty	Rank	Entry	Turf Qty
				-	
1.	A00-2882	6.4	14.	Merit	4.3
2.	Mercury	6.3	15.	Armada	4.3
3.	Bolt	6.2	16.	Rhythm	4.2
4.	LTP-A-03-38	6.0	17.	SR 2284	4.1
5.	Volt	6.0	18.	Baron	4.1
6.	Kenblue	5.7	19.	Raven	3.9
7.	Cabernet	5.4	20.	Zinfadel	3.9
8.	Langara	5.4	21.	Midnight	3.9
10.	Fielder	4.9	22.	Arrowhead	3.9
11.	Legend	4.9	23.	Fahrenheit 90	3.9
12.	Shiraz	4.8	24.	Bordeaux	3.8
13.	Bluenote	4.4	25.	LTP-A-08-6	3.4

Turf Quality rated on 1-9 scale, where 9 = best overall turf quality. Data average of the 2014 and 2015 growing seasons. Lsd at 5% = 0.9

2013 Low Maintenance Kentucky Bluegrass 2014-15 Turf Quality Ratings – Top Performers

_		Turf				Turf
Rank	Entry	Qty	Ra	nk	Entry	Qty
1.	PST-T10-18	6.7	1	1.	Pick 033	6.2
2.	A09-305	6.7	1	2.	Bluenote	6.1
3.	A07-783	6.6	1	3.	Juliet	6.1
4.	KB11-22	6.5	1	4.	A00-1400	6.0
5.	Avalanche	6.5	1	5.	PST-K8-88	6.0
6. 🤇	A04TB-7	6.5	1	6.	RAD-1409	5.9
7.	Touche	6.4	1	7.	Keeneland	5.9
8.	A07-782	6.3	1	8.	PST-K11-123	5.9
9.	Washington II	6.3	1	9.	4724-8	5.9
10.	Bolt	6.2	2	0.	A03-38	5.9

Turf Quality rated on 1-9 scale, where 9 = best overall turf quality. Data average of the 2014 and 2015 growing seasons. Lsd at 5% = 0.9

2013 Low Maintenance Kentucky Bluegrass 2014-15 Drought Quality Ratings – Top Performers

		Turf			Turf
Rank	Entry	Qty	Rank	Entry	Qty
1.	98-10 Purple	6.7	11.	KB11-47	5.7
2.	A09-305	6.7	12.	A05-930	5.7
3.	A07-783	6.2	13.	Legend	5.7
4.	A04TB-7	6.2	14.	A13-22	5.7
5.	A05-347	6.0	15.	103-585	5.5
6.	Fullback	6.0	16.	A08-2	5.3
7.	A07-782	6.0	17.	PST-K8-88	5.3
8.	Pick 033	5.8	18.	Keeneland	5.3
9.	KB11-28	5.8	19.	A98-233	5.3
10.	RAD-1409	5.8	20.	A13-1	5.3

Drought Quality rated on 1-9 scale, where 9 = best overall turf quality under drought conditions.

Data average of the 2014 and 2015 growing seasons. Lsd at 5% = 1.5

Selection of Kentucky Bluegrass for Deep Root Production

Mid-Atlantic types have deeper root production under high temperature stress

Mid-Atlantic Type - Cultivars

Aura Bandera Cabernet Eagleton* Fahrenheit 90

Longhorn Spitfire Starburst*

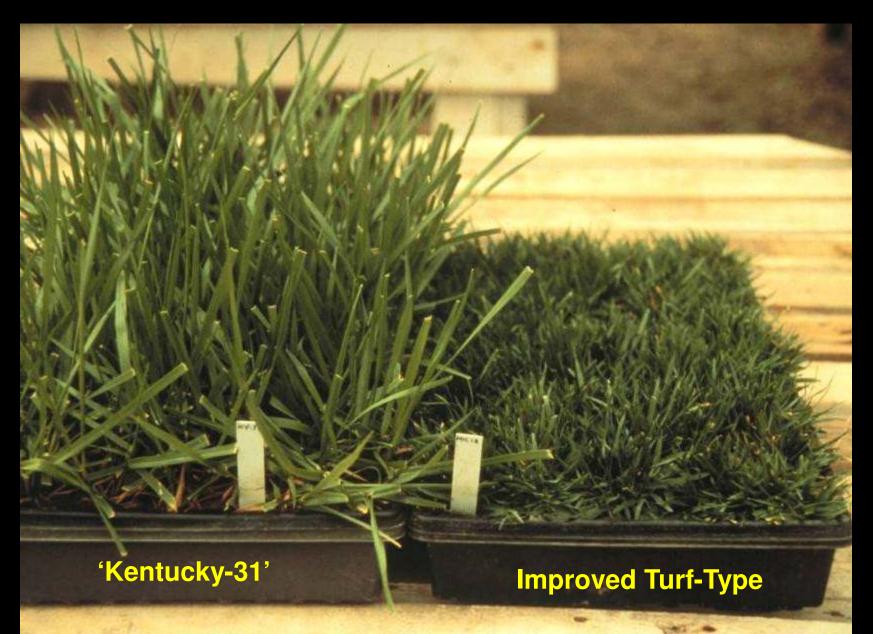
* Limited quantities available

Comparison of Tall Fescue and Kentucky Bluegrass

Tall Fescue Drought/Heat Stress Injury - 2010

Tall Fescue Tiller Plots:

Evaluation of Drought Tolerance of Progeny


Drought Tolerance Screening in Tall Fescue

Water withheld 75 days

(June-August)

Water withheld 75 days (June-August) Tall Fescue spaced plants

Improvements through breeding

Low Maintenance Mixture Trial – North Brunswick, NJ

- Mixtures bought from local stores
- Costume mixtures put together
- Tall fescue, Kentucky bluegrass (light or dark), hard fescue, strong creeping red fescue, Chewings, perennial ryegrass

2011 Turfgrass Mixture Trial

- Components of species blends were created using equivalent quantities by weight based on seed counts performed for each species
 - Tall fescue
 - Bullseye + Faith + Mustang 4 (33.3:33.3:33.3 %)
 - Hard fescue
 - Beacon + Firefly (50:50 %)
 - Kentucky bluegrass "Dark"
 - Midnight II + Bewitched (50:50 %)
 - Kentucky bluegrass "Light"
 - Bluenote + A05-361 (50:50 %)
 - Chewings fescue
 - Fairmont + Intrigue II (50:50 %)
 - Strong Creeping Red fescue
 - Celestial + Wendy Jean (50:50 %)
 - Perennial Ryegrass
 - Fiesta 4 + Paragon GLR + Grand Slam GLD (33.3:33.3:33.3 %)

2014 vs 2015

September 4, 2014

2014 vs 2015

September 10, 2015 Acceptable turf quality?

First irrigation event since 2013: September 22, 2015

November 2, 2015

October 31, 2014

'Bullseye' Tall Fescue

Hard Fescue (74.4%) + Kentucky Bluegrass (Dark) (25.6%) Hard Fescue (36.5%) + Kentucky Bluegrass-Dark (12.5%) + Chewings Fescue (51%)

November 2, 2015

Builseve Tall Fescue

Hard Fescue (74.4%) + Kentucky Bluegrass (Dark) (25.6%)

Hard Fescue (36.5%) + Kentucky Bluegrass-Dark (12.5%) + Chewings Fescue (51%)

October 31, 2014

Hard, Resource (******) Tall Fesovice (*****)

Hard Resourt (74.4%

Kentucky Bluegrass-Dark (25.69

Hard Fescue (41.7%) + Chewings Fescue (58.3%)

Hard Fescue (73.6%) + Kentucky Bluegrass-Light (26.6%)

November 2, 2015

Hard Fescue (73.6%) + Kentucky Bluegrass-Light (26.6%)

> Hard Fescue (74.4%) + Kentucky Bluegrass-Dark (25.6%)

Hard Fescue (27.1%) + Tall Fescue (72.9%)

October 31, 2014

Kentucky Bluegrass (Light) (14.7%) + Perennial Ryegrass (85.3%) Kentucky Bluegrass (Dark) (14.1%) + Perennial Ryegrass (85.9%)

November 2, 2015

Kentucky Bluegrass (Light) (14.7%) + Perennial Ryegrass (85.3%) Kentucky Bluegrass (Dark) (14.1%) + Perennial Ryegrass (85.9%)

October 31, 2014

Tall Fescue (88.7%) + Kentucky Bluegrass (Dark) (11.3%) Kentucky Bluegrass (Light) (14.7%) + Perennial Ryegrass (85.3%)

November 2, 2015

Tall Fescue (88.7%) + Kentucky Bluegrass (Dark) (11.3%) Kentucky Bluegrass (Light) (14.7%) + Perennial Ryegrass (85.3%)

Retail Mixture

'Dakota' Tall Fescue (19.8%)
'Frontier' Perennial Ryegrass (19.8%)
'Deepblue' Kentucky bluegrass (19.7%)
'Harpoon' Hard Fescue (19.7%)
'Carmen' chewings Fescue (19.7%)

October 31, 2014

"Thrives without chemicals" "Creates a lush beautiful organic lawn"

Retail Mixture 'Dakota' Tall Fescue (19.8%) 'Frontier' Perennial Ryegrass (19.8%) 'Deepblue' Kentucky bluegrass (19.7%) 'Harpoon' Hard Fescue (19.7%) 'Carmen' chewings Fescue (19.7%)

November 2, 2015

"Thrives without chemicals" "Creates a lush beautiful organic lawn"

2011 Turfgrass Mixture Trial

2012-15 Turf Quality Ratings – Top Performing Tall Fescue Mixtures (% by weight)

	Tall	Hard	Ky Blue	Ky Blue	Chew-	Strong	Per.	Turf Qty
Rank	Fescue	Fescue	Dark	Light	ings	Crp Red	Ryê	2012-15
1.	88.3			11.7				5.3
2.	88.7		11.3					5.3
5.	100							5.1
4.	41.3		5.2		21.5		32	5.1
5.	52.6		6.7				40.7	4.9
6.	72.9	27.1						4.8
7.	56.4						43.6	4.8
8.	Pennington Tall Fescue ("Rebel + Rebel Advance + Brockton"; 39.1:39.1:19.5)						4.8	
9.	66.7	24.8	8.5					4.7
10.	42.1			5.6		19.8	32.5	4.7
11.	41.2			5.5	21.4		31.9	4.7
12.	34.6		4.4		18	16.3	26.7	4.7
13.	36.5	13.5	4.6			17.2	28.2	4.7

Turf Quality rated on 1-9 scale, where 9 = best overall turf quality.

Data average of the 2012 through 2015 growing seasons. Lsd at 5% = 0.8

RUTGERS

Low Maintenance Turfgrass Selections

- Tall fescue first choice
- Can be mixed with Kentucky bluegrass for a high quality low maintenance lawn
- Needs to be the right Kentucky bluegrass
- Fine fescues are improving

What about Bentgrasses?

10-10-1-m

<u>Selected</u>

Not selected

Dollar Spot Disease Following Natural Infection

Dollar Spot Resistance in Creeping Bentgrass

18th Green

Declaration (HTE)

Dramatically reduce fungicide use

Bentgrass Breeding

- Brown Patch Resistance
- Anthracnose Resistance
- Copper Spot Resistance
- Traffic Tolerance
- Low Mowing Tolerance
- Salt Tolerance
- Drought Tolerance

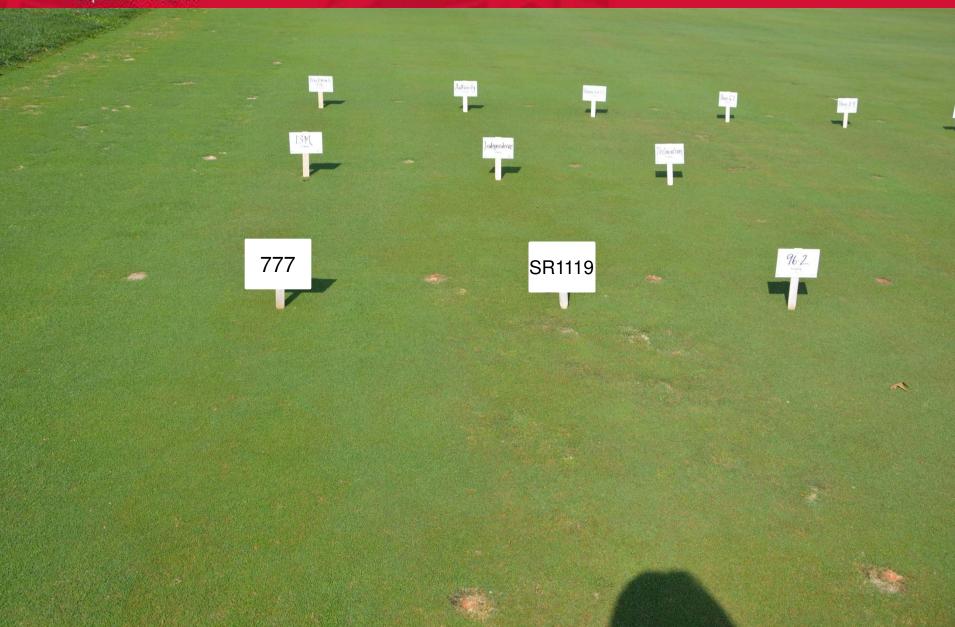

Declaration

NTEP Bentgrass Fairway Trial – Drought Tolerance

Cultivar	Qty	Cultivar	Qty
A08-EBM	9.0	007	6.0
A08-FT12	9.0	Authority	6.0
BCD	8.7	Penncross	5.7
Greentime	8.7	Princeville	5.3
Tiger II	8.7	Pure Select	5.3
L-93	7.3	Barracuda	5.0
PST R9D7	7.3	Declaration	4.3
Crystal Blue Links	7.0	Luminary	4.3
CY-2	7.0	Memorial	4.3
Proclamation	7.0	Pin-Up	4.3
T-1	7.0	Benchmark DSR	1.7
SRP-1WM	6.3	LSD	3.1

Drought ratings based on a 1-9 scale, 9=best

Breeding for Growth Habit in Creeping Bentgrass


Prostrate Type

and the second second second second

RUTGERS New Jersey Agricultural Experiment Station Creeping Bentgrass Cultivars

007	Focus	Penn G-6	Seaside II	777
13M	Independence	Penncross	Shark	Nightlife
96-2	Kingpin	Penneagle II	Southshore	Armor
Alpha	L93	Pennlinks II	SR 1119	Kingdom
Authority	Luminary	Pin Up	SR 1150	Piranha
Barracuda	Mackenzie	Proclamation	T-1	L93XD
Cobra 2	Mariner	Pure Distinction	Туее	
Crystal Bluelinks	Memorial	Pure Select	V8	
CY-2	Penn A-1	Putter		
Declaration	Penn A-4	Runner		
Flagstick	Penn G-2	Sandhill		

New Cultivars to Look For

- L93XD, 777, Piranha
- Excellent wear, heat, drought, disease resistance (multiple diseases)
- Very high shoot density

Brown Patch in Colonial Bentgrass

Brown Patch in Colonial Bentgrass

New Improved Colonial Bentgrasses

Capri
Puritan
Musket
Heritage

Low Maintenance Fairway Trial

- Creeping, Colonial, Fine fescues, mixtures with colonial and Chewings, colonial and hard, etc.
- Mowed at ½ inch
- Curative fungicide and weed control treatments
- Limited irrigation
- Wear applied with a golf cart

Conclusions

- Mixtures had the best turf quality, wear tolerance
- They were better than both the individual cultivars by themselves
- Chewings, Hard and Slender creeping red fescue had the best disease resistance while creeping and colonial bentgrasses had the poorest
- Colonial/Chewings and Colonial/Hard fescue proved to be promising mixtures for low maintenance fairways
- Overall, our goal is to improve cool-season grasses for low maintenance and other stresses such as drought, heat and diseases

O.J. Noer Research Foundation

Sustaining Turfgrass Research

The United States Golf Association

Email: bonos@aesop.rutgers.edu

http://turf.rutgers.edu

Bret Ramsey

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Testing Ground Resistance

Bret Ramsey, Golf Field Service Manager ASIC – April 21, 2016

The Intelligent Use of Water.™

LEADERSHIP • EDUCATION • PARTNERSHIPS • PRODUCTS

Today's Agenda Grounding & Surge Protection

- 1. What is Surge?
- 2. Why is Grounding Important?
- 3. Typical Grounding & Surge Protection Equipment
- 4. What Influences Soil Resistance?
- 5. Testing Grounds
- 6. Case Studies
- 7. How can Bad Grounding be Improved?
- 8. Shielding Wire

Δςις

What is Surge?

Power surges, or spikes are fast, short duration electrical transients in voltage (voltage spikes), current (current spikes), or transferred energy (energy spikes) in an electrical circuit.

Typical causes for voltage spikes:

- Lightning strikes
- Power outages
- Tripped circuit breakers
- Short circuits
- Power transitions in other large equipment on the same power line
- Malfunctions caused by the power company
- Electromagnetic pulses (EMP) with electromagnetic energy distributed typically up to the 100 kHz and 1 MHz frequency range.
- Inductive spikes

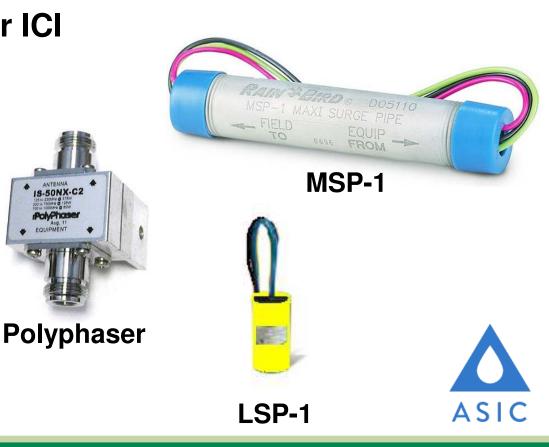
Why is Grounding Important?

For Your System's Protection...

The theory behind most surge protection is to provide a path of least resistance for electrical surges so they dissipate harmlessly in the ground. Such surge protection involves both surge arrestors and proper grounding.

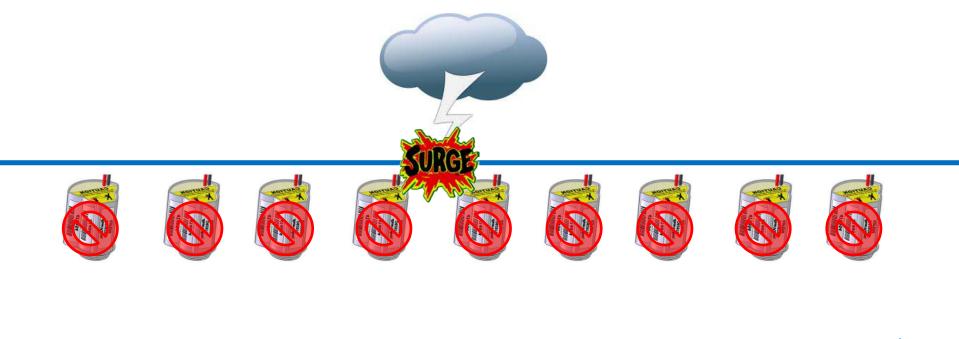
No Ground = No Surge Protection

Grounding Equipment


Surge Protection Equipment

Examples of Surge Protection Components:

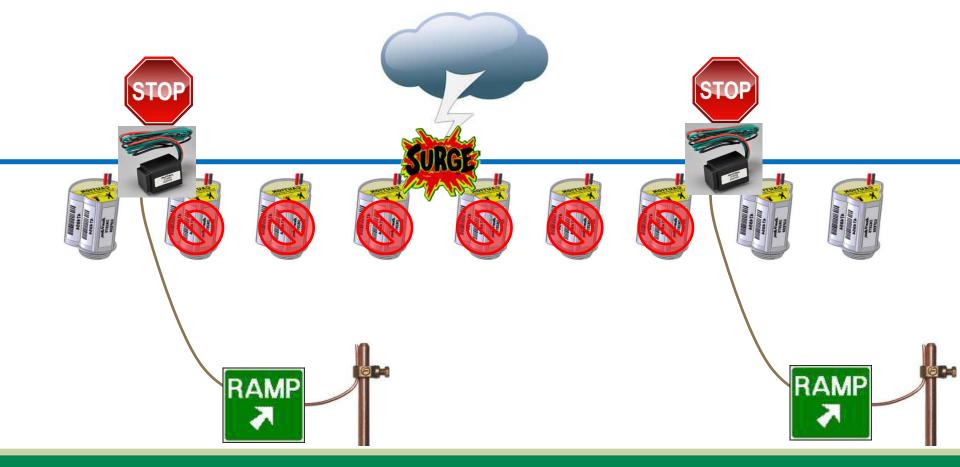
- ICSD = Integrated Control Surge Device
- MSP-1 = Protection for ICI


ICSD

The Intelligent Use of Water.[™] — LEADERSHIP • EDUCATION • PARTNERSHIPS • PRODUCTS

Grounding & Surge Protection

WITHOUT Surge Protection:



The Intelligent Use of Water.[™] — LEADERSHIP · EDUCATION · PARTNERSHIPS · PRODUCTS

© Rain Bird Corporation

Grounding & Surge Protection

Purpose of **ICSD** is to **CONTAIN** Surge:

Ground Resistance is Affected by:

- 1. Soil Type
 - Sandy/Rocky Soils = High Resistance (Typ.)
 - Clay/Silt/Loam Soils = Low Resistance (Typ.)

	Resistivity (approx), Ω -cm				
Soil	Min.	Average	Max.		
Ashes, cinders, brine,waste	590	2,370	7,000		
Clay, shale, gumbo, loam	340	4,060	16,300		
Same, with varying proportions of sand and gravel	1,020	15,800	135,000		
Gravel, sand, stones with little clay or loam	59,000	94,000	458,000		

Ground Resistance is Affected by:

2. Soil Moisture


- As Soil Moisture Increases, Ground Resistance Decreases
- Resistance increases dramatically when soil moisture falls below 20%
- Where Possible, Locate Ground Rods/Plates in IRRIGATED Areas

Moisture content	Resistivity Ω-cm				
% by weight	Top soil	Sandy loam			
0	>10 ⁹	>10 ⁹			
2.5	250,000	150,000			
5	165,000	43,000			
10	53,000	18,500			
15	19,000	10,500			
20	12,000	6,300			
30	6,400	4,200			

Ground Resistance is Affected by:

- 3. Temperature
 - Cooler temperatures increase soil resistance
 - Not easily influenced
- 4. Mineral Content
 - + Salt = <Resistance</p>
 - Typical Enhancement Ingredient

Grounding Test Equipment

Fall of Potential Tester

- Requires disconnect from utility power.

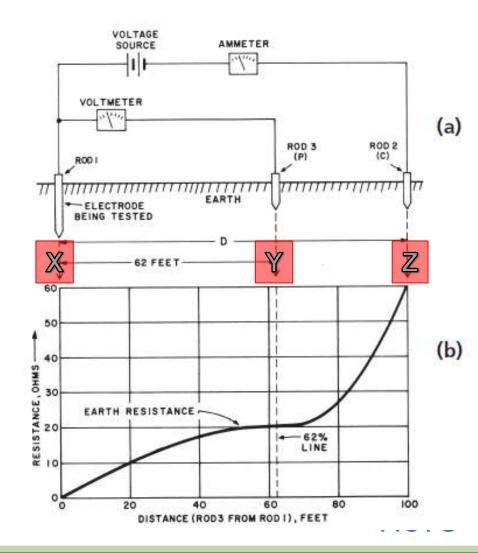
Clamp on Tester

- Requires connection to utility power.

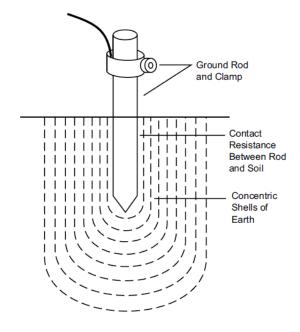
Grounding Test Equipment

Fall of Potential Tester

- Many Earth Ground Test Instruments offer multiple test capabilities.
- 2, 3 & 4 Probe Tests are Common
- Use ONLY the 3 Probe, Fall of Potential test when testing ground electrodes.



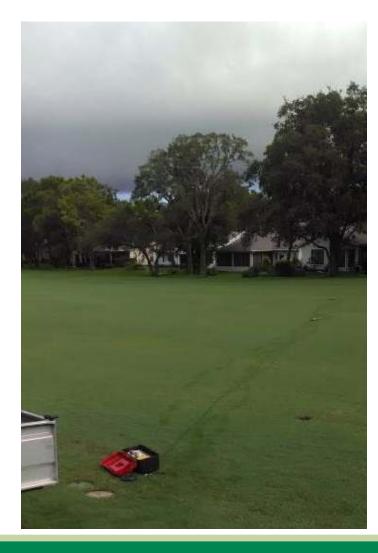
Testing a Grounding Electrode


By Ohm's Law:

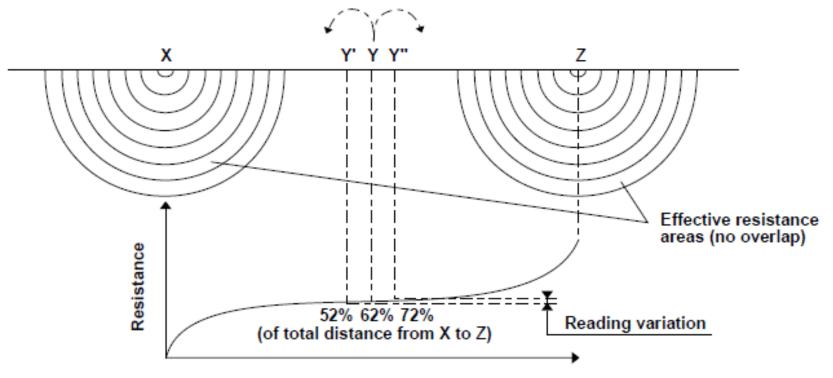
(R = E/I) you can determine the earth resistance at any point measured. For example, if the measured voltage *E* between rods 1 and 3 is 30 V and the measured current I is 2 A, the resistance of the earth *R* at that point would be 15 Ω .

(Megger- Getting Down to Earth)

Testing a Grounding Electrode

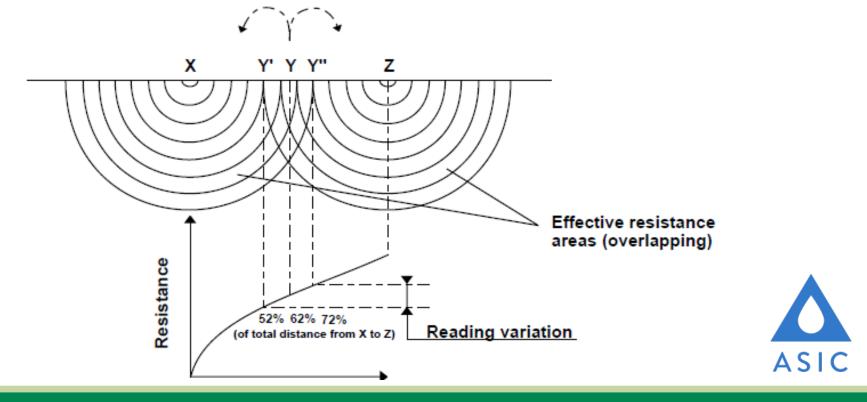

"The electrode can be thought of as being surrounded by **concentric shells of earth or soil**, all of the same thickness. The closer the shell of the electrode, the smaller its surface; hence the greater the resistance. The farther away the shells are from the electrode, the greater the surface of the shell; hence the lower the resistance." (AEMC-3640-4610-Manual)

Testing Resistance of the Grounding Grid


Distance to Auxiliary Electrodes using the 62% Method					
Depth Driven	Depth Driven Distance to Y				
6 Feet	45 Feet	72 Feet			
8 Feet	50 Feet	80 Feet			
10 Feet	55 Feet	88 Feet			
12 Feet	60 Feet	96 Feet			
18 Feet	71 Feet	115 Feet			
20 Feet	74 Feet	120 Feet			

Testing Resistance of the Grounding Grid

Proper Spacing of Test Probes:


- Z Probe far enough from X for no overlap of Effective Resistance areas
- Resistance should not vary if Y probe is moved 10% towards X or Z

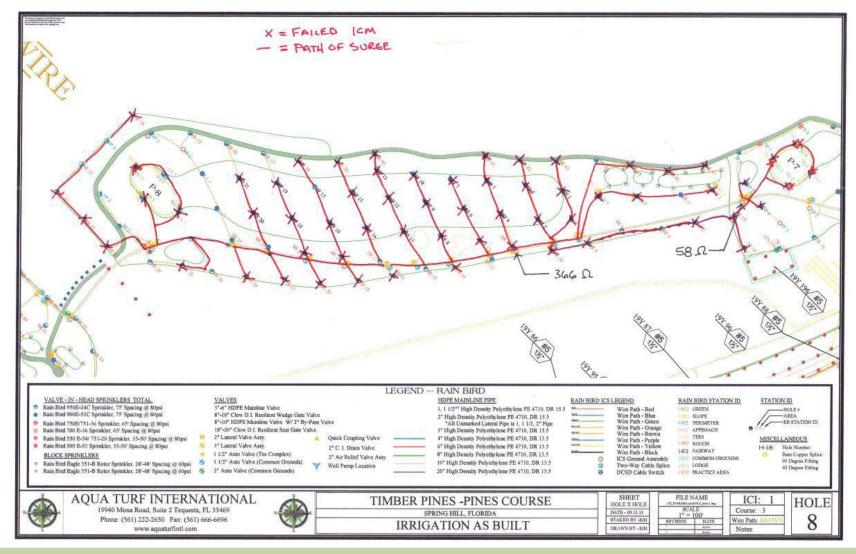
Testing Resistance of the Grounding Grid

IMPROPER Spacing of Test Probes – Z TOO CLOSE to X:

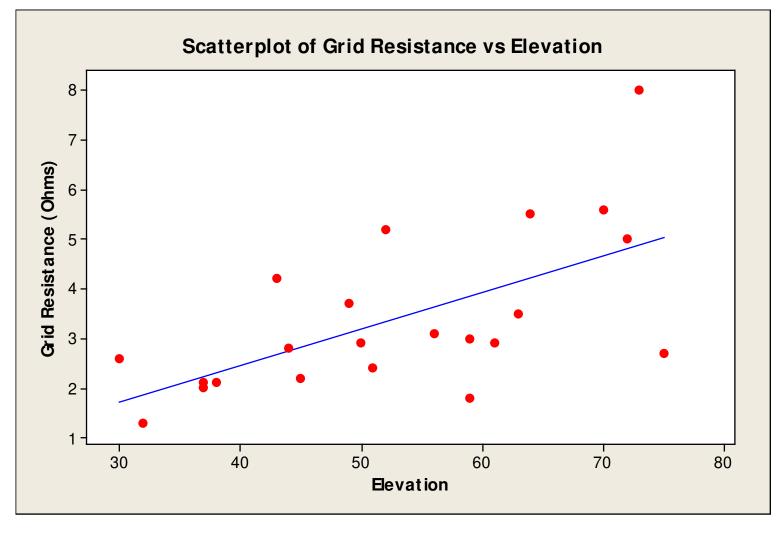
- Z Probe too close to X, Effective Resistance spheres overlapping
- Resistance will vary significantly if Y probe is moved 10% towards X or Z

Grounding & Surge Protection

Testing Earth Ground Resistance


- Resistance readings must be taken WITHOUT the bonding/shielding wire connected (grounding electrode only).
- Each ICSD must have a local earth ground resistance of less than 50 ohms (without bonding/shielding wire).
- Combination of grounding electrodes may be necessary to obtain proper resistance.

Case Study – Tampa, FL


					Ground Resistance (Ohms)					
WPT	Course	Phase	Hole	Description	Grid	Rod		Elevation		
336	Hills	2	3F	Strike Location	N/A	N/A		62		
337	Hills	2	3F	ICSD	8.0		609	73		
338	Hills	2	3T	ICSD	5.6		589	70		
339	Hills	2	2T	ICSD	5.5		229			
341	Pines	3	8F	Strike Location / J	5.0		366	72	\sim	
342	Pines	3	8F	ICSD	5.2		58	52	\backslash	
343	Lakes	1	17		 2.9		484	61		1
344	Lakes	1	18		 2.8		393	44	Rod Only,	
345	Lakes	1		Bonding Wire	 N/A		124	51	Develue: Mire	
346	Lakes	1	10	Connected	 2.2		370	45	Bonding Wire	
347	Lakes	1	4	Connected	 N/A		33	38	Disconnected	
348	Lakes	1	6		2.9		1,133	50	Disconnected	
349	Lakes	1	8G	ICSD	2.4		289	51		
350	Lakes	1	15/16	ICSD	2.6		89	30		
351	Lakes	1	12/13	ICSD	2.7		655	75		
352	Hills	2	10F	ICSD	3.5		195	63		
353	Hills	2	13G	ICSD	3.1		397	56		
354	Hills	2	15F	ICSD	1.8		436	59		
355	Hills	2	17G	ICSD	2.1		936	37		
356	Pines	3	10T	Strike Location / ICSD	4.2		789	43		
357	Pines	3	10F	Strike Location / ICSD	2.1		419	38		
359	Pines	3	10F	Strike Location / ICSD	3.0		335	59		
360	Pines	3	13F	ICSD	3.7		239	49		
361	Pines	3	16F	ICSD	1.3		251	32		
362	Pines	3	17F	ICSD	2.0		256	37		
									ASI	С

Case Study – Tampa, FL

The Intelligent Use of Water.[™] — LEADERSHIP · EDUCATION · PARTNERSHIPS · PRODUCTS

© Rain Bird Corporation

© Rain Bird Corporation

ASIC

Case Study – Armonk, NY

"Direct Strike"

- Properly Grounded (tested to 50 Ohms or less)
- Proper ICSD locations
- Result = Damage
 contained to 14 ICM's

- Ground Resistance may be Reduced by:
- Adding Rods
- Adding Plates
- Adding Grounding Enhancement Material such as POWER SET or GEM

Ground Resistance may be Reduced by:

Adding Rods Copper-clad arounding rod То equipment

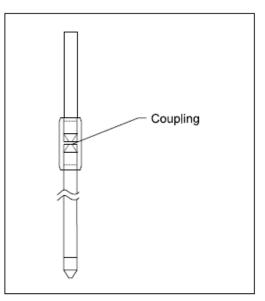
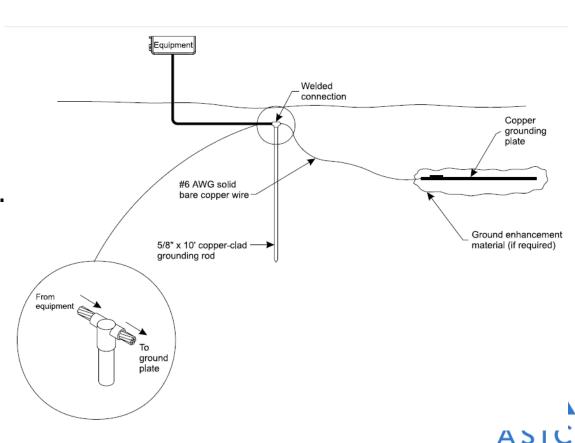



Figure 2: Stacking grounding rods with threaded couplers can help decrease ground resistance.

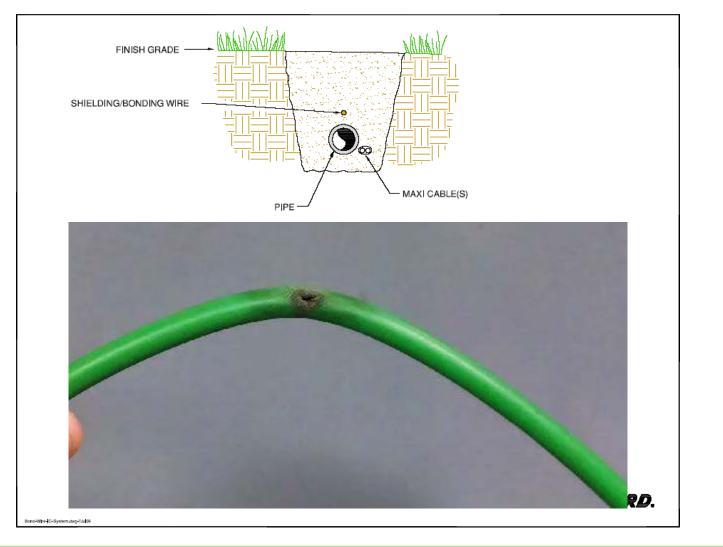
Ground Resistance may be Reduced by:

- Adding Rods
- Adding Plates 4"x96"x.0625" Min.

Conducting a Grounding Survey

- 1. Install a 5/8" x 10' copper clad ground rod and test for resistance
 - If resistance is 50 Ohms or less, a single rod will suffice at this location
 - If resistance is > 50 Ohms, an enhancement strategy is required
- 2. Install a **grounding plate** 15' away from the ground rod at a 3' depth and measure its resistance
 - If the grounding rod is not at or below the resistance of the plate (measured independently), couple a second rod and drive the total length to a depth of 20'
 - If the resistance of the 20' rod is 50% or less of that of the 10' rod, coupling rods is a good strategy
 - If the resistance of the 20' rod is **not 50%** or less than that of the 10' rod, adding a second 10' rod that is **20' away** (preferably in an irrigated area) is a better strategy.

Optional Bonding/Shielding Wire


Purpose of Bonding/Shielding Wire:

1. To protect wires and cables from lightning

SURGES - When lightning strikes the ground, its electro-magnetic energy is dissipated into the soil in an area as far as 15-20 miles from the point of impact. This electro-magnetic energy is then induced on the underground wires and causes thousands of amperes to flow in the copper conductors. At times, this high flow of current is sufficient to melt the copper conductor, which in turn melts the insulation of the wire.

Optional Shielding Wire

© Rain Bird Corporation

Revolutionizing the way we manage water

Install Confidence. Install Rain Bird[®].

The Intelligent Use of Water.[™] — Leadership • Education • partnerships • products

© Rain Bird Corporation

Jerry Riley

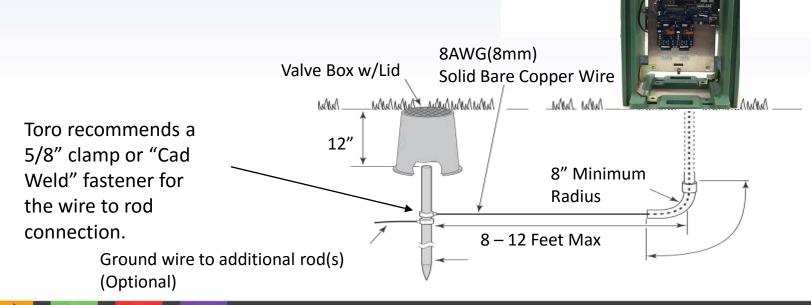
ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Grounding / Clamp Tester

ASIC 2016 REGIONAL CONFERENCES


Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

▲ ASIC

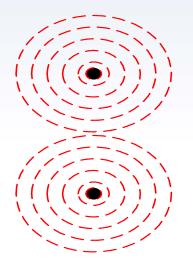
Earth ground should be attained for proper ground protection at the Gateway Unit

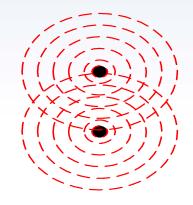
0 - 10 Ohms - Optimum

"The sphere of influence"

(For ground rods)

8 ft. Ground Rod 16 ft.





Ground rod spacing

(Top view)

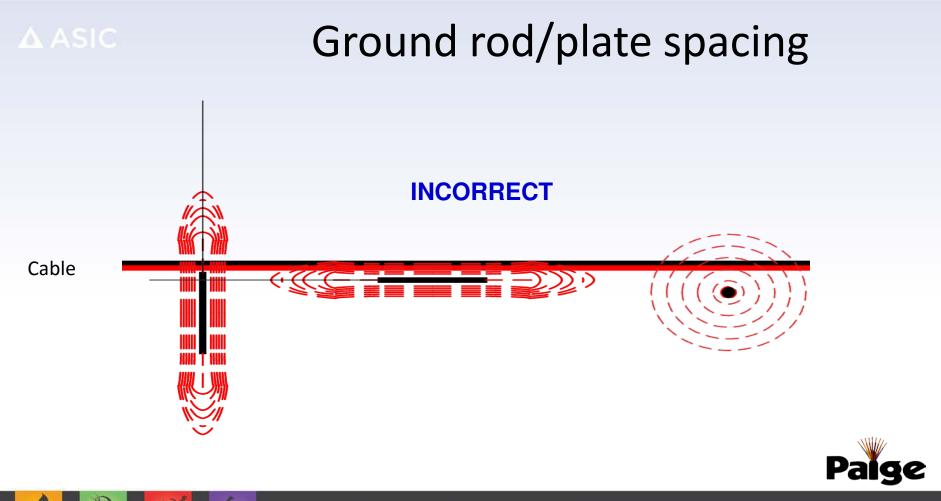
INCORRECT

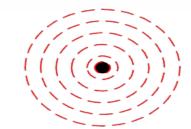
CORRECT (2 times the ground rod length)

"The sphere of influence"

(For ground plates)

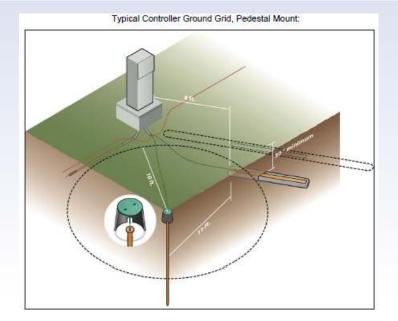
Ground plate spacing

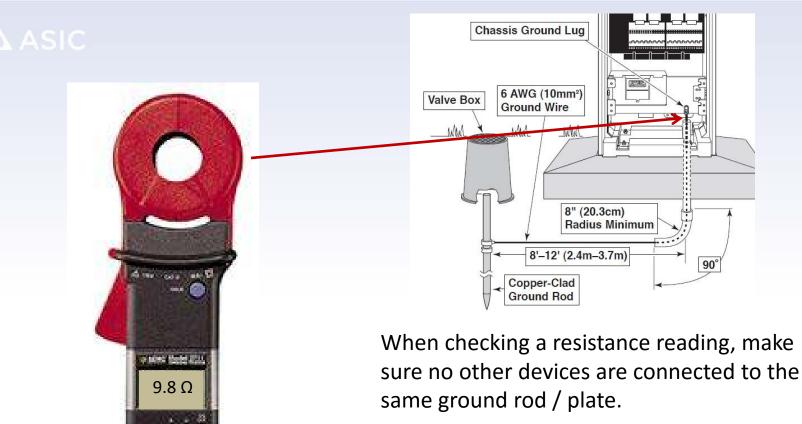

(Top view)

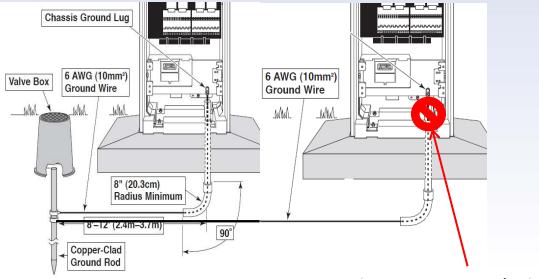

CORRECT (2 times the ground plate width)

Ground rod/plate spacing

CORRECT

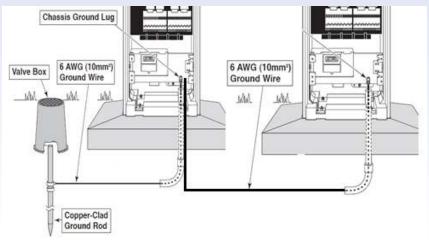



∆ ASIC


When checking a resistance reading, make sure no other devices are connected to the same ground rod / plate.

Good ohm readings is less than 10 ohms

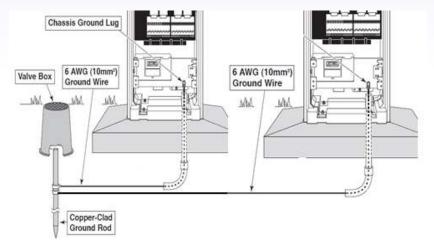
Good ohm readings is less than 10 ohms


Disconnect ground wire

When a reading shows "Loop" above the ohm reading, that means other devices are connected to the same ground rod / plate

∆ ASIC

(SV)


1/2

Incorrect

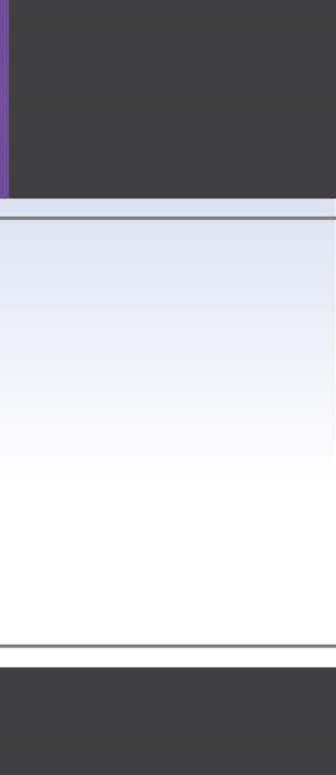
65

Correct

∆ ASIC

Questions

Č



Larry Spain

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Tow Behind Sensor Technology

Larry Spain, LI 575, C.L.I.A. The Toro Company

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Precision Turf Management

Measuring & understanding variability in site conditions is the challenge.

Precision Turf Management

Precision Irrigation Management Site-specific Irrigation Management

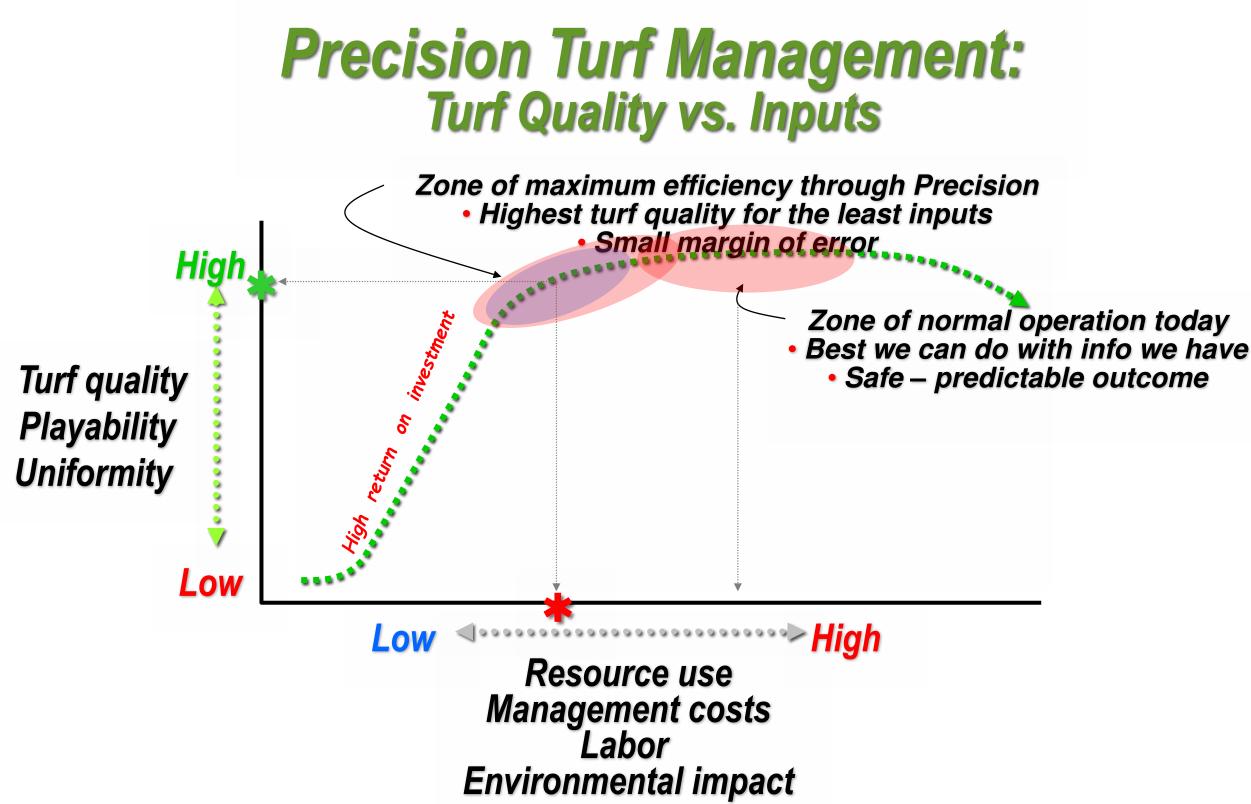
Efficiency

requires **Precision**

• Water use Operating budgets • Labor Chemicals Fertilizers

Equipment

 Precise application & management of all inputs


requires **Information**

requires

- Critical agronomic site conditions
- Equipment performance

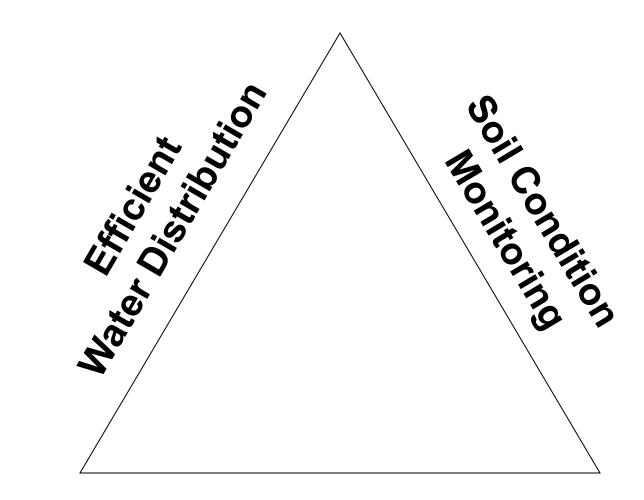
Sensors & GIS

 Soil Properties Moisture Compaction Fertility Salinity • Turf Performance/Quality Topography/Relief • Weather • GPS

Efficient	Site	Real-7
Water Distribution	Variability	Mor
 Precise Nozzles Precise Spacing Precise Patterns Precise Pressure Precise Trajectory Precise Scheduling Precise Frequency 	 Soil Type Plant Type Root Depth Precipitation Rate Infiltration Rate Elevation/Slope Exposure Outside Factors 	 Soil Sali Tem Mea Dura

-Time Soil onitoring

il Moisture linity mperature asurement rations

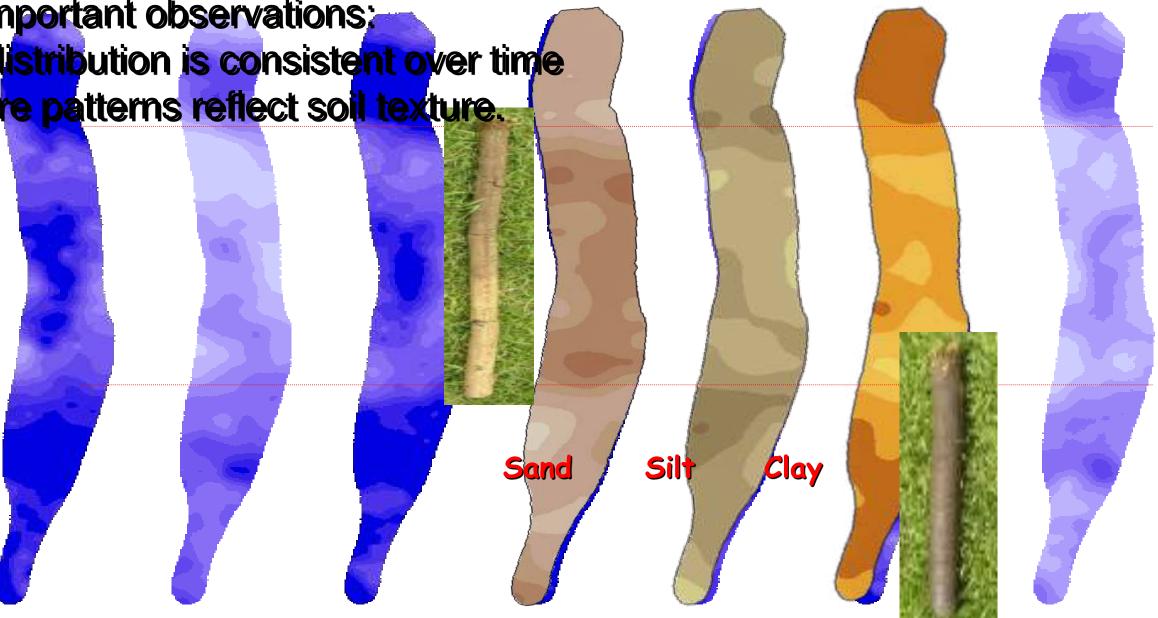


Efficient Water Distribution	Site & System Variability	Real- Mo
 Infinity Sprinkler LYNX Software P.A.C.E. Software Judit Kits 	 Soil Type Plant Type Root Depth Precipitation Rate Infiltration Rate Compaction Elevation/Slope Exposure Outside Factors 	Turf Gua Hand-He

I-Time Soil onitoring

ard Soil Sensors eld Sensor

Site Assessment


Decagon Soil Moisture Sensors

Two important observations; 1) Soil moisture distribution is consistent over time 2) Soil moisture patterns reflect soil texture.

9/1/04 9/30/04 6/22/05 6/28/05 7/6/05 7/19/05

Precise placement of Wireless Soil Sensors based on site evaluations will provide constant verification of soil conditions in like areas with minimal sensors 2007

PrecisionSense™ Site Assessment

PrecisionSenseTM Data Collection Vehicle

GPS provides latitude & longitude referencing and elevation data

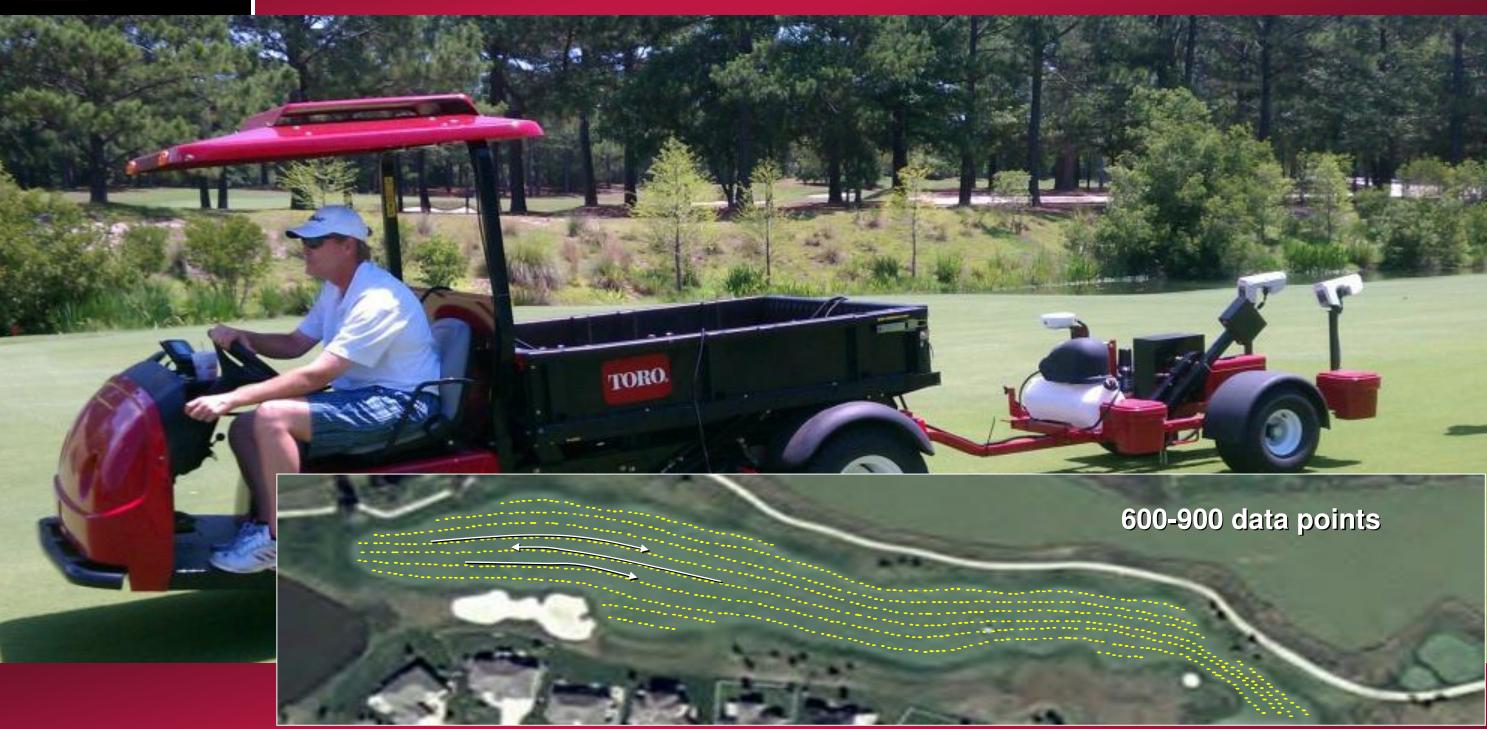
Soil sensors measure moisture & salinity content plus compaction

Foamer provides navigation

TORO. Count on it.

Spectrometers measure turf vigor

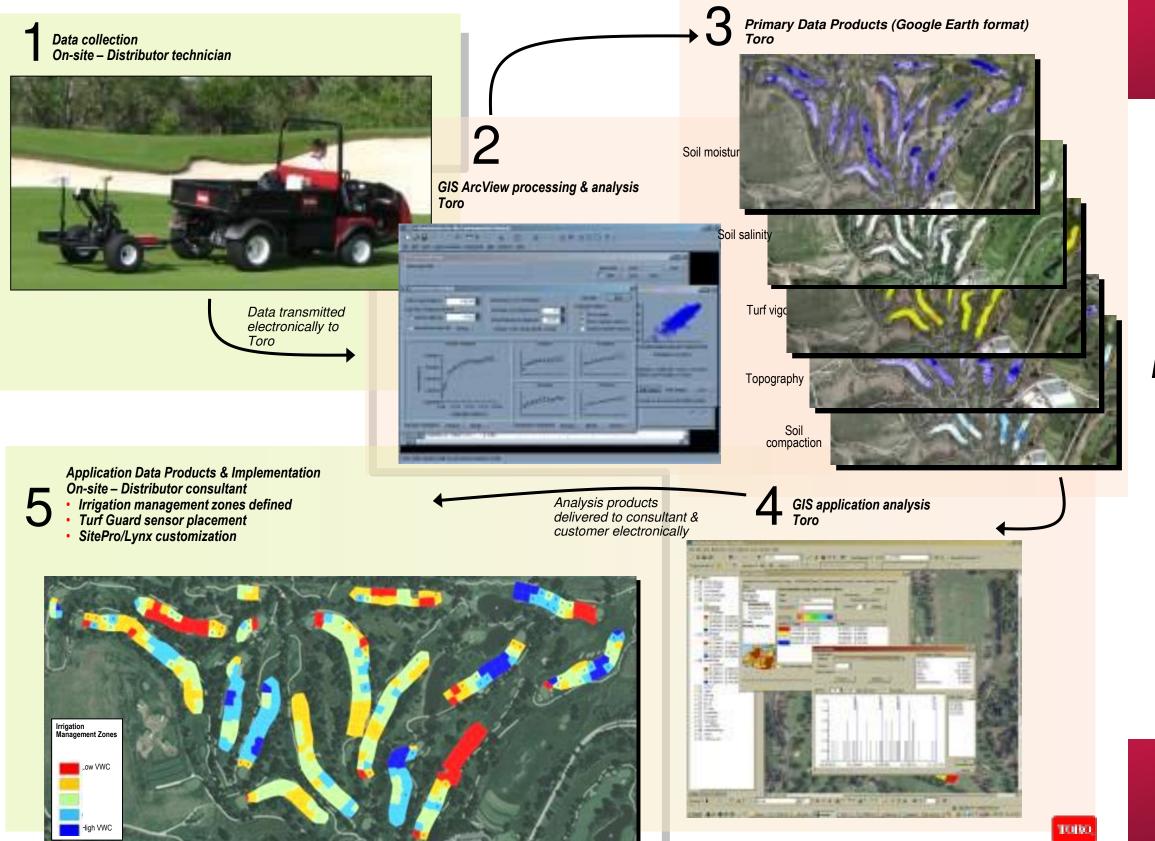
Soil moisture
Soil salinity
Soil compaction
Turf quality
Topographic relief



PrecisionSense™ maps give you the information to help with Precision Turf **Maintenance practices**

PrecisionSense™ Site Assessment

Sampling pattern



 Decision-support system Data collection & analysis The product is Information

TORO. Count on it.

Three Components: 1) Data collection tools "PS 6000" 2) Data processing & analysis using GIS 3) Data interpretation & consulting

Data collection & analysis process

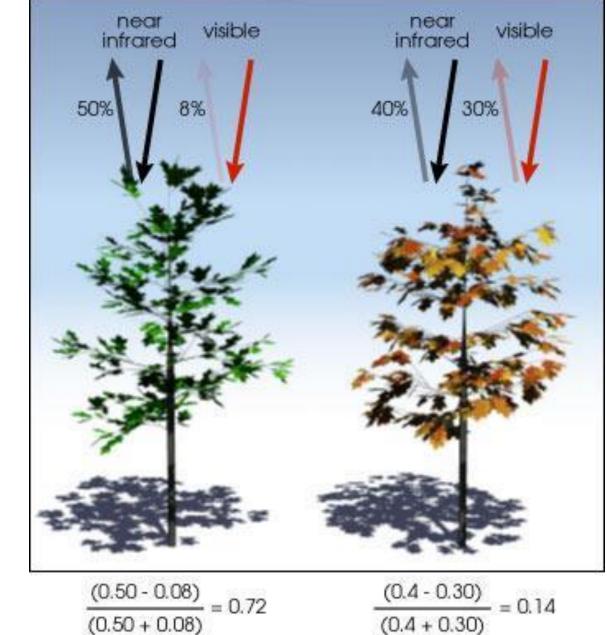
Base Maps

Soil Moisture (VWC)

1963

-September -

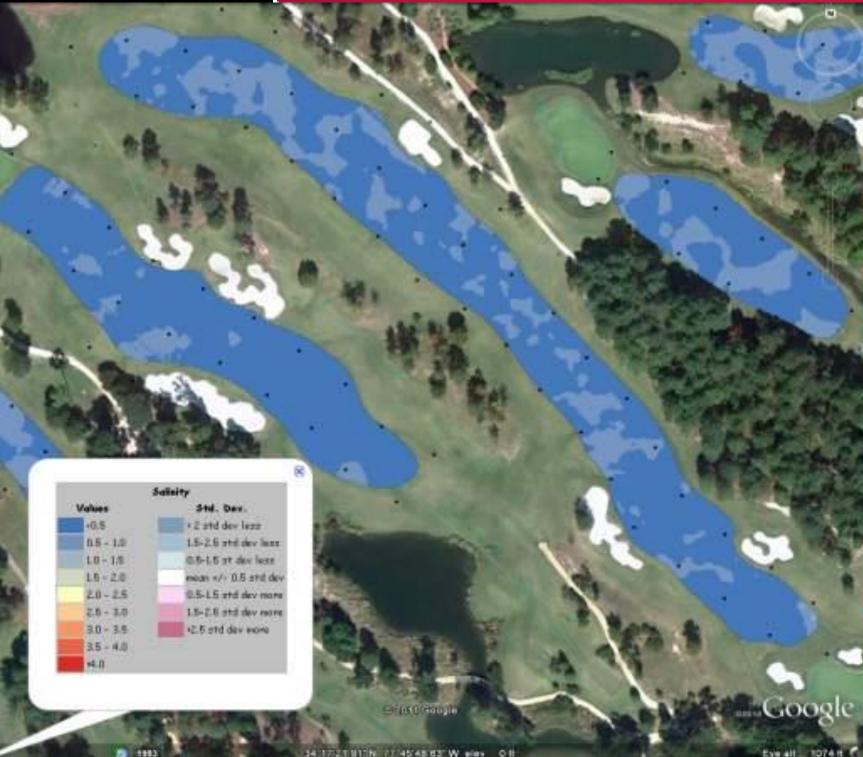
Google


Eye all 107411

Turf Vigor (NDVI)

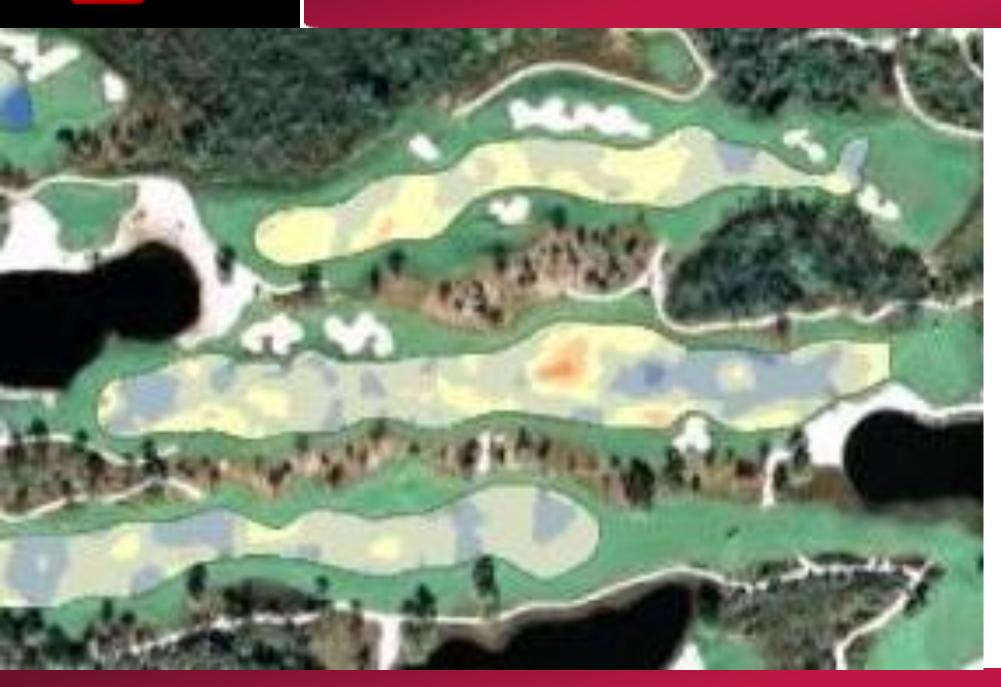
NDVI

Normalized Difference **Vegetation Index**



-THERE PROPERTY

Soil Compaction (P.S.I.)


Google

Salinity deci-Siemens (dS/m)

Salinity deci-Siemens (dS/m)

Elevation Contour Lines Slope Aspect

Topography Contour Lines Slope Aspect

Precision Management Zones

Soil Moisture Classification

Saturation

space		 (all pore space occupied by water)
Capillary pore space Noncapillary pore sp	Free or gravitational water	Water lost through gravitational drainage
Nonce		Field capacity
pore space	Capillary water	Water available for plant uptake Permanent Wilting point
pillary	Hydroscopic water	Water unavailable to plants
		Dry soil

How Big Is The Tank?

Plant available water (field capacity)

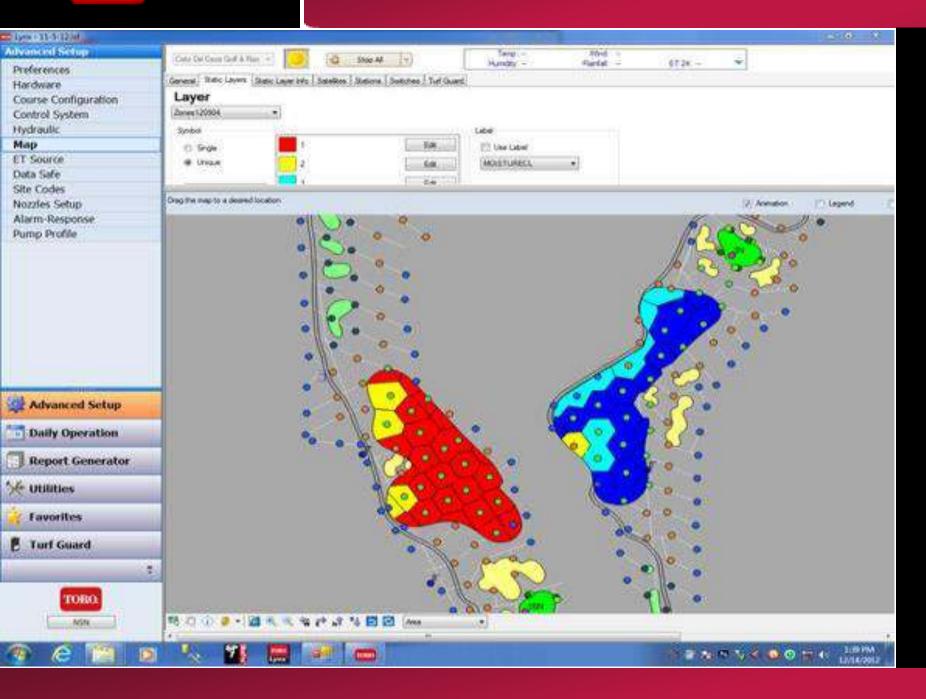
Water holding capacity depends on soil type (texture)

Unavailable water (permanent wilting point) 60 35% 33% 50 32% 31% 26% 28% 40 23% % pore space occupied by plant available water 22% 20% 30 14% 20 9% 12% 10 0 Clay Sandy Sandy clay Sandy clay Loamy sand Silty Silty clay Loam Silty clay Clay Sand Silt loam loam loam loam loam

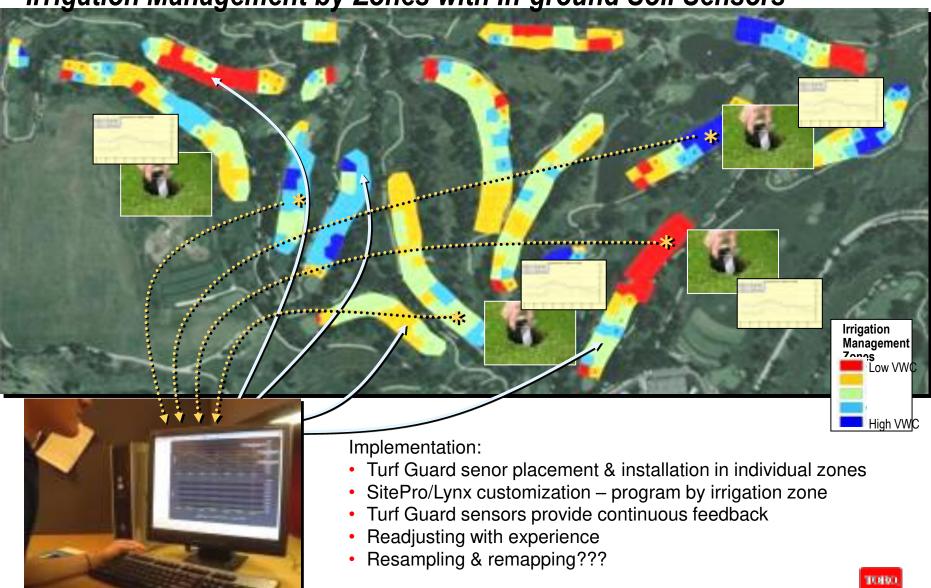
	1			
,				

Derived from: http://weather.nmsu.edu/models/irrsch/soiltype.

Measurement of soil moisture (VWC) at field capacity reveals soil texture variability



Using that variability, Irrigation **Management Zones** are identified down to the sprinkler level for scheduling of irrigation by soil type and for Turf Guard sensor placement



added to Toro's LYNX central software for use in reprogramming to use the management zones.

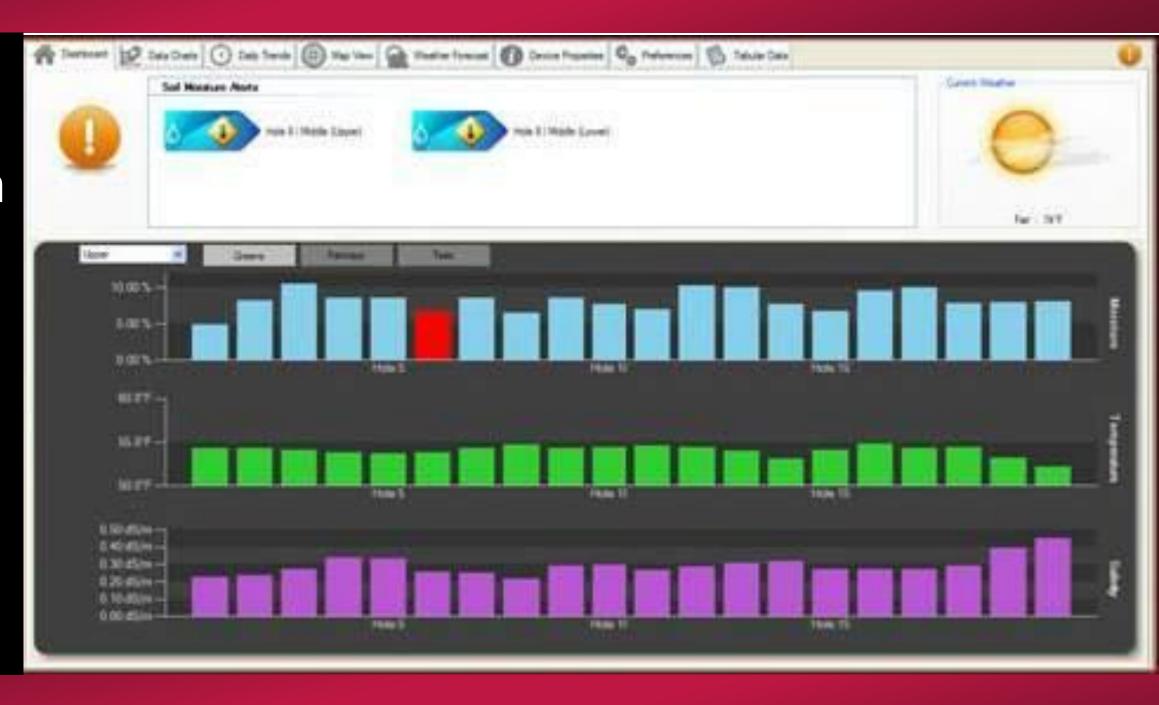
Irrigation Management by Zones with In-ground Soil Sensors

Precise placement of Soil Sensors based on site evaluations will provide constant verification of soil conditions in like areas with minimal sensors

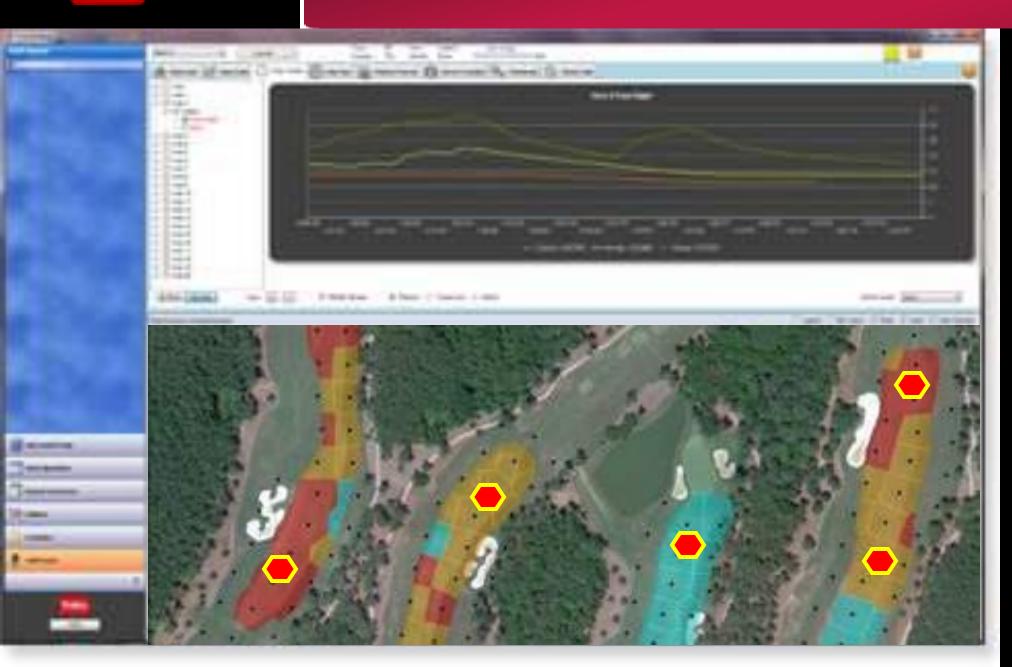


Software provides constant verification of soil conditions

Leaching events flush salts out of the root zoneverified by Turf Guard sensors



Compare soil temperatures across holes and sensors on each hole



Thresholds can be set to display indicators for moisture, salinity, & temperature levels

Turf Guard Sensor feedback can be linked to Toro's Lynx Irrigation Control Software for decision making

How - Get Chartan with Deriver Law	and a			-				-					-							and the last
Darlly Operation	(Si Salar	1	¢ 9	- III.		Tempi Handly	- Revi		6734 ···			100.00 1							0	1
Course Report	24		Course On	Dation			D Italian M			Uture	10.248									
Manual Irrigation	A&#. 201 %</td><td>134</td><td></td><td>10.00</td><td></td><td>Lu fe</td><td></td><td>18 181</td><td>9.010 H</td><td></td><td>Collimps </td><td>Abre</td><td></td><td></td><td></td><td></td><td></td><td></td><td>New IT 13</td><td>1.0.00</td></tr><tr><td>Synchronize Work Order</td><td>Pagan</td><td>* 4</td><td>Ances</td><td>LAUTET</td><td>faster .</td><td>A8.41</td><td>LastAnt</td><td>fast and</td><td>40. AM</td><td>Pct. Adust</td><td>Det fee</td><td>- Marriy</td><td>Active Days</td><td>#Forc</td><td>17744</td><td>£7.58473</td><td>-</td><td>Aurile</td><td>furfiliant.</td><td>14</td></tr><tr><td>Station Groups</td><td>(Denne</td><td>1 3</td><td></td><td>10</td><td>38</td><td>88/33</td><td>8.108.21</td><td>0.168.39</td><td>8.15/0.26</td><td>100</td><td>0.00794</td><td>A. [</td><td>to an an at an an se</td><td>Uner Define</td><td>d 1991e</td><td>Norm</td><td>10010</td><td>Taxed</td><td>4. 4</td><td></td></tr><tr><td>Master Groups</td><td>110</td><td>- 04</td><td>Ave: Cycle</td><td>Lation</td><td>19441-07</td><td>36.37</td><td>Last Act.</td><td>Hary! Arr.</td><td>Att. Ant.</td><td>Ppt Adjust</td><td>DRet</td><td>ITSNET</td><td></td><td>fielder 7</td><td>ritari</td><td></td><td></td><td></td><td></td><td>4</td></tr><tr><td>Watering Plan</td><td></td><td>9</td><td></td><td>-</td><td>10</td><td>05.00</td><td>6.01</td><td>6.20</td><td>6.05</td><td>100</td><td></td><td>5000</td><td>1679</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Instant Program</td><td>18 18 Union</td><td>9</td><td>10</td><td></td><td>10</td><td>1040</td><td>8.20</td><td>0.20</td><td>8.30</td><td>100</td><td></td><td>law</td><td>their .</td><td>12</td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>and the second se</td><td>1 - 59-Greens</td><td>0</td><td>8</td><td></td><td>10</td><td>30.00</td><td>8.20</td><td>5.30</td><td>0.30</td><td>100</td><td></td><td>ture</td><td>Tere</td><td>48</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Projected Flow Scheduled Activity</td><td>a showers</td><td>0</td><td>17</td><td>- (0</td><td>-10</td><td>10.00</td><td>8.30</td><td>8.30</td><td>8.29</td><td>100</td><td></td><td>ture</td><td>7678</td><td>.10</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>S-12-Greens</td><td>0</td><td>1</td><td>- 64</td><td>- 40</td><td>10.00</td><td>6.20</td><td>9.30</td><td>8.30</td><td>-00</td><td>. 8</td><td>Nore</td><td>New</td><td>30</td><td></td><td></td><td></td><td></td><td></td><td>10.</td></tr><tr><td>Switch Program</td><td>0.12-0 mm</td><td>9</td><td>1 0</td><td></td><td>0</td><td>10.00</td><td>8.30</td><td>9.30</td><td>6.30</td><td>100</td><td></td><td>hexe hexe</td><td>tere .</td><td>8</td><td>+</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>1 1</td><td>1.0</td><td>10</td><td>10.00</td><td>6.00</td><td>9.20</td><td>6.20</td><td>100</td><td></td><td>hone</td><td>ALC: NOT</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>a a contente</td><td></td><td>1 12</td><td>-</td><td>10</td><td>10.90</td><td>5.00</td><td>4.20</td><td>8.00</td><td>100</td><td></td><td>10/0</td><td>1010</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1.0</td></tr><tr><td></td><td></td><td>0</td><td></td><td>- 64</td><td>- 50</td><td>38/13</td><td>8.30</td><td>8.20</td><td>82078.05</td><td>.00</td><td></td><td>Norm</td><td>New</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>- · 1170 mm</td><td>0</td><td>10</td><td>- 10</td><td>80</td><td>30.00</td><td>0,50</td><td>2.30</td><td>6.30</td><td>100</td><td></td><td>Silver</td><td>Nov</td><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>E Stationers</td><td>0</td><td></td><td>-</td><td>10</td><td>18/13</td><td>8.25</td><td>9,30</td><td>8.20(9.36</td><td>100</td><td></td><td>ture</td><td>Thre</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>1 db Gwen</td><td>0</td><td></td><td>- 10</td><td>- 10</td><td>1040</td><td>1.00</td><td>9.30 9.306.30</td><td>6.80 66.07</td><td>100</td><td></td><td>tione Norm</td><td>Non None</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>1 8</td><td></td><td>10</td><td>10.00</td><td>6.30</td><td>0.30</td><td>6.30</td><td>100</td><td>4</td><td>time</td><td>fare</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.0</td></tr><tr><td></td><td>T in Test</td><td>21.00</td><td>1 14 1</td><td>-</td><td></td><td>88/85</td><td>6.18(6.84</td><td>8.1805.64</td><td>0.18/0.64</td><td></td><td>RISCOM</td><td>4</td><td></td><td>Liser Define</td><td>d Nere I</td><td>Store</td><td>flore</td><td>ine</td><td></td><td></td></tr><tr><td></td><td>C & Tarment</td><td>1 0</td><td>1 10</td><td>10</td><td></td><td>30/12</td><td>4.050.18</td><td>1006.18</td><td>8.42,16,21</td><td></td><td>1000</td><td>A 1</td><td>10 43 25 17 28 18 38</td><td>User Defes</td><td></td><td>Apre</td><td>See</td><td>Tane</td><td></td><td></td></tr><tr><td></td><td>- a tespe</td><td>1 0</td><td>10</td><td>20</td><td></td><td>18/15</td><td>6406-46</td><td>6.005-0</td><td>8.6770.48</td><td>100</td><td>9.00.094</td><td>A</td><td></td><td>Liver Darfree</td><td></td><td>Norm</td><td>fere</td><td>Team .</td><td></td><td></td></tr><tr><td></td><td>- @ Perseters</td><td>ш 🥥</td><td>1 11</td><td></td><td></td><td>10.00</td><td>8.1209.20</td><td>8.1399.30</td><td>8.13/9.39</td><td>-</td><td>0.00794</td><td></td><td>****</td><td>tion Define</td><td></td><td>Norm</td><td>tione</td><td>Terro .</td><td></td><td></td></tr><tr><td></td><td>: g targetter</td><td></td><td>- <u>5</u></td><td>3/20</td><td>3/8</td><td>1/19</td><td>0,0</td><td>0.0</td><td>6.18</td><td></td><td>2.01.48</td><td></td><td></td><td>Gair Daffre</td><td></td><td>Norm</td><td>litere</td><td>Teste</td><td></td><td></td></tr><tr><td></td><td></td><td>=1 0 21 0</td><td></td><td>13 328</td><td>5/28 3/28</td><td>3/30</td><td>1.165.27</td><td>0.085.00</td><td>8.18/0.30</td><td>10</td><td>105 A9 105 AF</td><td></td><td></td><td>Car Delta</td><td></td><td>Now.</td><td>There .</td><td>Taxie Value</td><td></td><td></td></tr><tr><th></th><th>11 magere</th><th></th><th>4 <u>11</u></th><th>27</th><th>122</th><th></th><th>-</th><th></th><th></th><th></th><th>1.00 444</th><th>1</th><th>日田田田田田田</th><th></th><th>Selection of</th><th></th><th>1.272</th><th>2.60</th><th></th><th>27</th></tr><tr><td></td><td>Drag the root to a description</td><td>mattern.</td><td></td><td></td><td></td><td></td><td></td><td>L. D. Store</td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td>Newson 2</td><td>Logent ()</td><td>De Leves</td><td>Size Title</td><td>Diffe Dereg</td></tr><tr><td></td><td>A DO NOT THE OWNER.</td><td>6 I.) - 60</td><td></td><td></td><td></td><td>ALC: N</td><td>-</td><td>100</td><td>90 C 20 A</td><td>and shall</td><td></td><td>100</td><td>Constant of the</td><td>1</td><td>- Con 171</td><td>1000</td><td></td><td>CONT ON</td><td>223</td><td>7.7</td></tr><tr><td></td><td>121203.00</td><td>10.0</td><td></td><td></td><td></td><td>100</td><td></td><td>2010</td><td></td><td></td><td>1.00</td><td>10</td><td>A CONTRACTOR OF</td><td>10</td><td></td><td>Sec.</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>COLUMN TWO IS NOT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Favorites</td><td>Salar Sector</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5228</td><td>200.2</td><td></td><td></td><td>1.12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>000000000</td><td>6460</td><td>6550</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.0 M</td><td></td><td></td><td></td><td>100</td><td>1000</td><td></td><td></td><td></td><td></td></tr><tr><td>Advanced Setup</td><td>ALC: NOT THE OWNER.</td><td>10.00</td><td>100</td><td>100</td><td>100</td><td></td><td></td><td></td><td>Sec. 1</td><td></td><td></td><td></td><td>S</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1 2 2</td></tr><tr><td></td><td>THE REAL PROPERTY OF</td><td>C DO</td><td>100</td><td></td><td>2.1.5</td><td>N. S.</td><td></td><td></td><td>-</td><td>1000</td><td></td><td></td><td>1.1.1.1.1.</td><td>25</td><td></td><td></td><td>100</td><td></td><td></td><td>Contraction of</td></tr><tr><td>Daily Operation</td><td>1000</td><td>100</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Daily Operation</td><td></td><td>-</td><td>1</td><td></td><td></td><td>2</td><td>1</td><td></td><td>2</td><td>1</td><td></td><td></td><td>2. 1</td><td></td><td></td><td></td><td></td><td>.</td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>R</td><td></td><td></td><td></td><td>T</td><td>Ţ</td><td>-</td><td></td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td></tr><tr><td>Report Generator</td><td></td><td></td><td>R</td><td></td><td></td><td></td><td>The second</td><td></td><td>-</td><td>• 0 0</td><td>2</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td></td><td></td></tr><tr><td>Report Generator</td><td></td><td>Canada P</td><td></td><td></td><td></td><td></td><td>AL AL</td><td>¥ .</td><td></td><td>-</td><td>2</td><td>9</td><td>1</td><td></td><td></td><td>14 M</td><td></td><td>J</td><td></td><td>-</td></tr><tr><td>Report Generator</td><td></td><td>and is</td><td>•</td><td></td><td></td><td></td><td>the p</td><td></td><td></td><td></td><td>*</td><td>9</td><td>1</td><td></td><td></td><td>1 - T</td><td></td><td>1</td><td></td><td></td></tr><tr><td>Report Generator</td><td></td><td>Service in</td><td>e</td><td></td><td></td><td></td><td>The seal</td><td></td><td>•</td><td></td><td>-</td><td>9</td><td>1</td><td></td><td></td><td>1 - 1 m</td><td></td><td></td><td></td><td>and a second</td></tr><tr><td>Report Generator Turf Guard</td><td></td><td>Service and</td><td>5</td><td></td><td></td><td></td><td>and a</td><td></td><td>•</td><td></td><td>-</td><td>19</td><td>1</td><td></td><td></td><td>14</td><td></td><td></td><td></td><td>and a series</td></tr><tr><td>Report Generator Turf Guard Utilities</td><td></td><td>Survey States</td><td>ż</td><td></td><td></td><td>シート</td><td>and and</td><td></td><td></td><td></td><td>大学</td><td>9</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>All Same</td></tr><tr><td>Report Generator Turf Guard</td><td></td><td>Sindian .</td><td>3</td><td></td><td></td><td></td><td>and and</td><td></td><td>•</td><td></td><td>の</td><td>6</td><td>4</td><td></td><td></td><td></td><td>and a second</td><td></td><td></td><td></td></tr></tbody></table>																			

Turf Guard Sensors can be viewed in the Lynx Map for integrated decision-making

Amt.	Pct. Adjust	Start Ti	me	Priority		Active	Days		RT Ca	lc	ET M	ode	ET
0.26	100	9:00 P	M	A	24 2	5 26 21	7 28 29 3	ι	Jser Def	ined	ned None		
Amt.	Pct. Adjust	Offset		ET Sour	rce	Ra	ainfall	Ma	x Stns	Turf (Guard		
20	100	0		None	!	Ν	None		10				
20	100	0		None		Ν	lone		10	4			
Amt.	Pct. Adjust	Suspend	СТ	īme	Volu	ume	Turf Guar	ď					
95	100	0	10):00	368	3.00	10:16	.4					
95	100	0	10):00	368.00		10:16.4						
95	100	0	10):00	368	3 .0 0	10:16	.4					
95	100	0	10):00	368	3.00	10:16	.4					
20	100	0		None		Ν	None		10				
20	100	0		None		Ν	None		10	4	F		
Amt.	Pct. Adjust	Suspend	СТ	īme	Volu	ume	Turf Guar	ď					
0	100	0	0:	:00	(0	 20:16	.8					
0	100	0	0:	: 0 0	(D	 20:16	.8					
0	100	0	0:	:00	(0	20:16	.8					
0	100	0	0:	: 0 0	(0	 20:16	.8					
20	100	0		None		N	None		10				
0.26	100	0		None		N	None		10				
10	100	•		NI		N	I		10				

Here, the Turf **Guard Sensors are** indicating moisture needs for specific stations based on user-defined thresholds

Precision Irrigation Audit

Irrigation Auditing

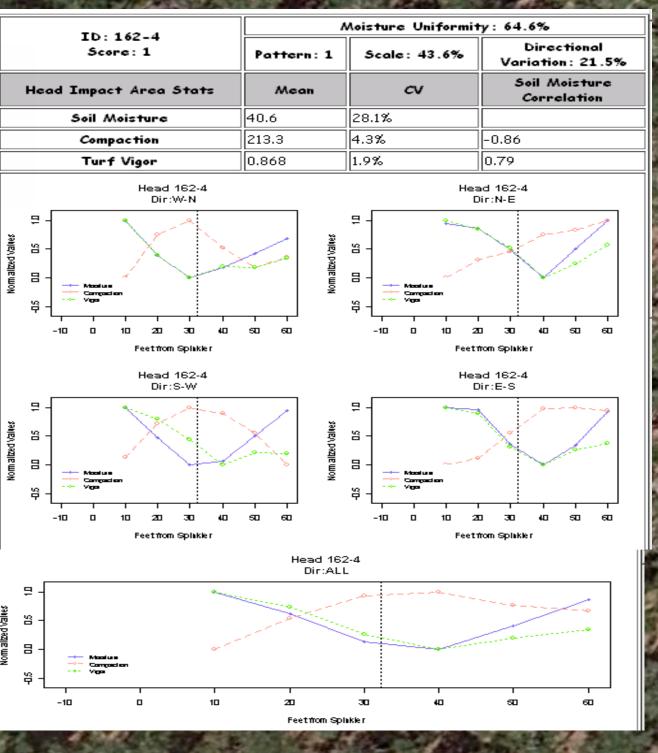
Distribution uniformity test using the catch-can method

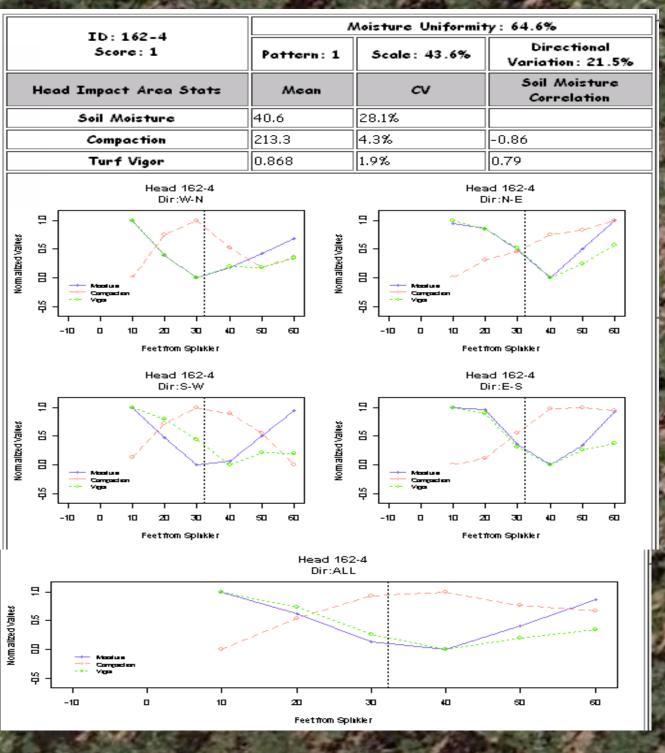


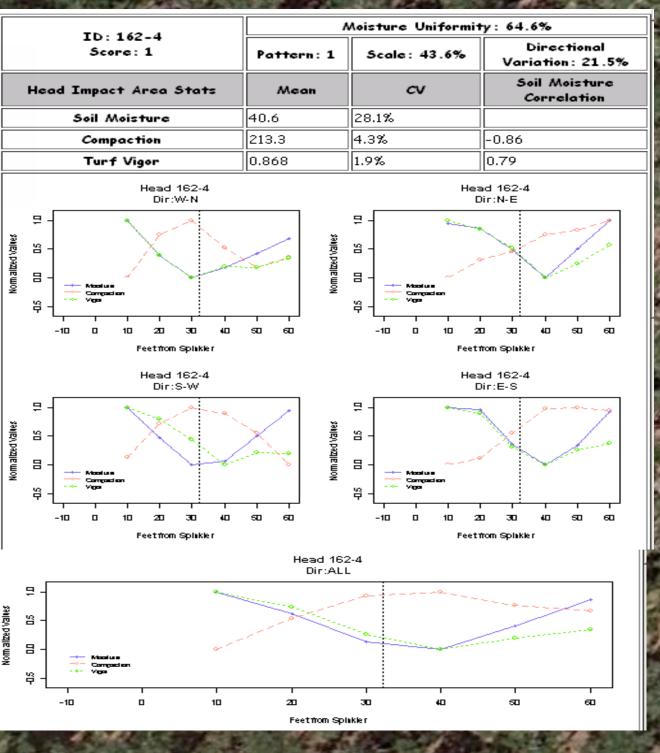
Uniform soil moisture

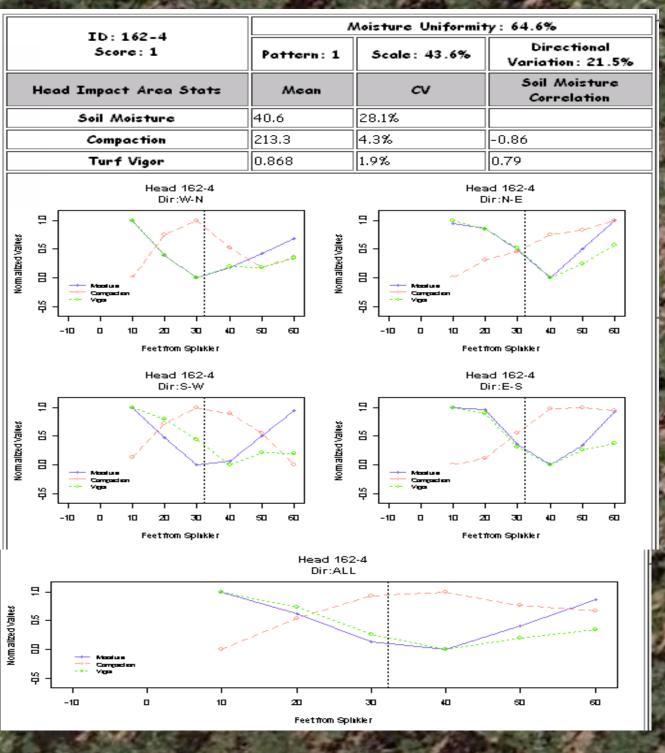
Irrigation audit maps display Low Quarter **Soil Moisture Uniformity (SMU) for** identification of dry zones

Irrigation audit maps display High Quarter Soil Moisture Uniformity (SMU) for identification of wet zones






Compaction High Quarter maps help you see where treatment is needed to aid in water absorption and nutrient uptake

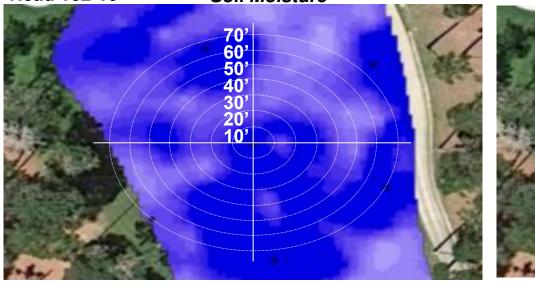


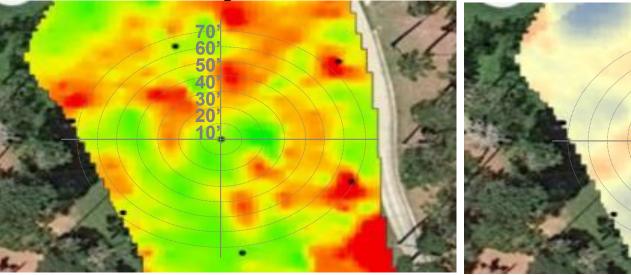
Irrigation Auditing Evaluating soil moisture distribution around individual sprinkler heads

Frwy #16 Head 1-162-4 MU 64.6% **Directional variation 21.5%** Pattern scale 43.6%

30 20

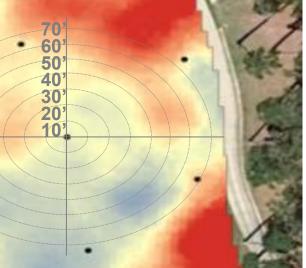
1.07


Individual Irrigation Head Level - Metrics


Head ID	Min	Mean	Max	Range	Std. Dev.	CV	Moisture Uniformity	Pattern	Pattern Scale	Directional Variation	Turf Vigor Correlation	Compaction Correlation	Score
162-10	20.63	47.38	87.2	66.57	12.78	27%	67%	1	22.89	18.2	0.40	-0.63	5
162-11	23.78	56.4	89.07	65.29	12.29	21.8%	70%	9	38.78	14.7	0.68	-0.67	4
162-12	23.37	51.52	80.22	56.85	12.81	24.9%	67%	1	62.78	9.7	0.42	-0.82	5
162-13	14.8	39.25	60.53	45.73	9.48	24.2%	67%	3	26.11	17.9	0.54	-0.79	4
162-14	15.77	46.53	97.92	82.15	17.19	36.9%	59%	1	72.30	21.2	0.41	-0.54	5
162-31	23.01	38.52	57.95	34.94	7.79	20.2%	77%	5	12.84	13.6	0.79	0.13	8
162-32	16.2	43.79	104.6	88.4	21.29	48.6%	53%	1	66.96	25.2	0.06	-0.53	5
162-33	23.26	45.99	99.83	76.57	17.81	38.7%	61%	13	29.00	31.4	0.67	-0.60	4
162-34	16.76	50.03	92.82	76.06	14.24	28.5%	61%	1	46.51	19.9	0.20	-0.51	5
162-35	25.9	40.88	59.03	33.13	8.6	21%	73%	7	23.19	19.4	0.81	0.19	4
162-36	15.37	30.59	56.71	41.34	9	29.4%	69%	3	48.56	16.9	0.39	-0.29	5
162-37	24.79	37.08	48.63	23.84	4.24	11.4%	86%	3	15.06	10.1	0.02	0.00	10
162-38	18	41.33	63.16	45.16	9.36	22.6%	72%	1	50.49	11.1	0.04	-0.09	6
162-39	36.79	44.86	49.88	13.09	2.48	5.5%	93%	NA	3.85	3.1	-0.16	0.14	10
162-40	16.25	48.78	162.94	146.69	24.93	51.1%	49%	3	87.41	28.4	0.54	-0.70	4

Head 162-10

Soil Moisture


Turf Vigor

Soil Compaction

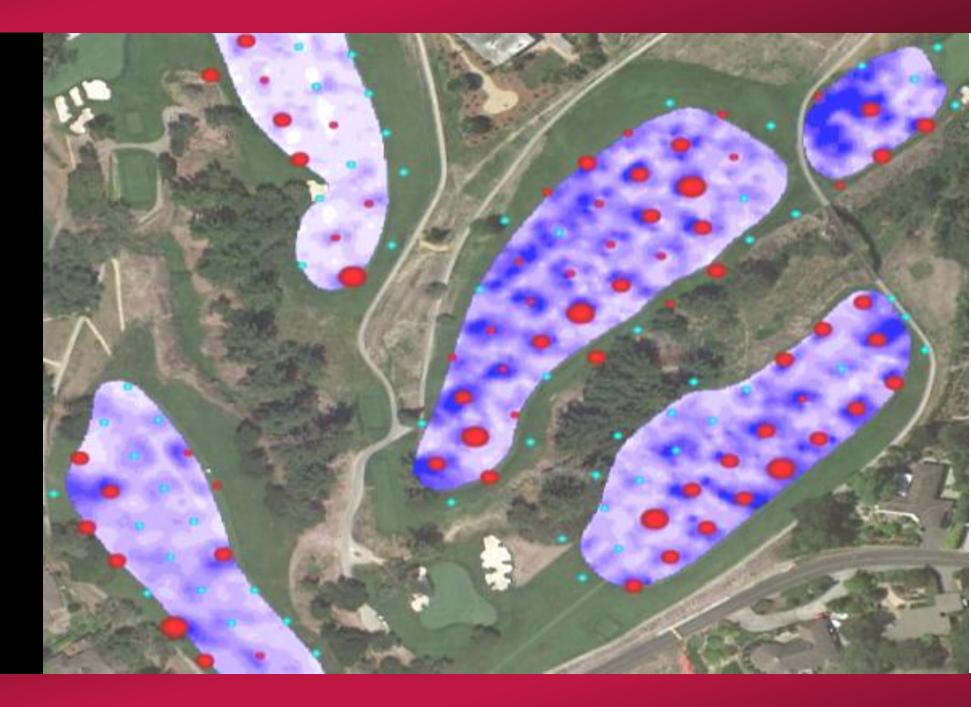
Fairway Head ID Score

1	11-12	3
	11-19	3 🔴
	11-33	3
	12-1	3
	12-2	3
	12-3	3
	12-5	3
	12-6	3
	12-7	3
	12-8	3
	12-9	3
	11-10	4
	11-16	4 🔴
	11-18	4
	12-4	4
	12-13	4
	12-23	4
	12-25	4
	11-7	5
	11-15	5 🔎
	11-17	5
	11-31	5
	11-32	5
	12-14	5
	12-15	5
	12-18	5
	12-24	5
	12-26	5
	12-28	5
		•
Fairv	vay Head ID	Score

airv	vay Head ID	Score
2	22-5	2
~	23-13	3
	23-22	3 🔵
	00.00	0

Fairv	vay Head ID	Score	
3	31-17	3	
	31-19	3 🔴	
	32-25	3	
	32-27	3	
	31-21	4	
	31-22	4 🥌	
	32-26	4	
	32-28	4	
	32-29	5	
	32-30	5 👅	
- .		-	
Fairv	vay Head ID	Score	
4	41-20	3 🥌	
	42-24	4 🔴	
	41-18	5 👄	
Fairv	vay Head ID	Score	
5	52-9	з 🥌	
· ·	52-16	4 🔴	
	52-19	5 👄	
Fairv	vay Head ID	Score	
6	62-22	2	
•	62-5	3	
	62-10	3 🔴	
	62-27	3	
	63-17	3	

	ay neua ib	
7	71-11	2 🔵
•	71-9	3
	71-10	3
	71-12	3
	71-13	3
	71-18	з 🔴
	71-19	3
	71-14	4
	71-15	4 👝
	71-17	4
	72-18	4
	72-23	4
	71-21	5
	72-16	5 🔴
	72-21	5
Fairv	72-21 vay Head ID	
Fairv 8		
	vay Head ID	Score
8	82-19	Score 4 5 🔮
8 Fairv	82-19 82-16	Score 4 5 • Score
8	vay Head ID 82-19 82-16 vay Head ID	Score 2 3
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23	Score 4 5 • Score 2 3 3 •
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16	Score 2 3
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16 92-18	Score 4 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16 92-18 92-21	Score 4 5 • Score 2 3 3 3 3 3 3 3 3 3
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16 92-18 92-21 93-1	Score 4 5 Score 2 3 3 3 3 3 3 3 3 3 3 3 3 3
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16 92-18 92-21 93-1 93-9 93-13 94-17	Score 4 5 9 5 9 3 3 3 3 3 3 3 3 3 3 3 3 3
8 Fairv	vay Head ID 82-19 82-16 vay Head ID 93-23 92-16 92-18 92-21 93-1 93-9 93-13	Score 4 5 Score 2 3 3 3 3 3 3 3 3 3 3 3 3 3


00 40

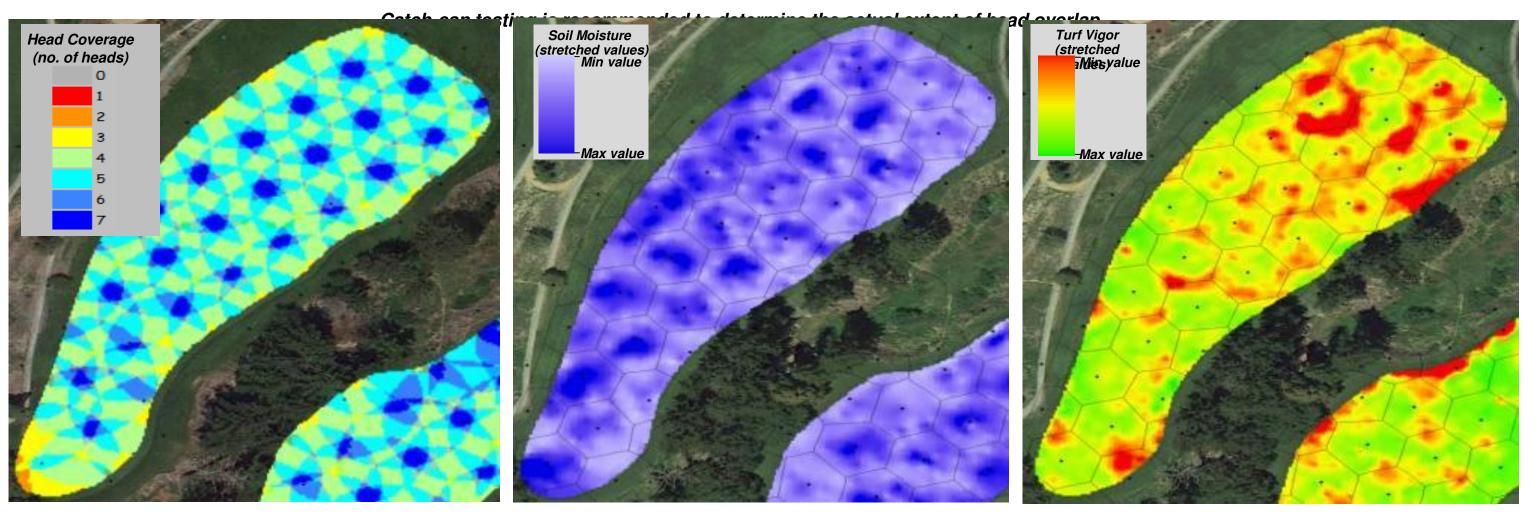
Fairway Head ID Score

Irrigation audit maps display Low Quarter Soil Moisture Uniformity (SMU) for identification of dry zones

Soil moisture uniformity, quality of turf, and compaction are combined combine to create a chart of trouble spots ranked by number.

Sprinkler arc overlap maps display how many sprinklers impact the same areas helping to understand why areas might be drier or wetter

Head spacing and sprinklers in nonuniform areas are identified on the maps in red for location of high priority work orders



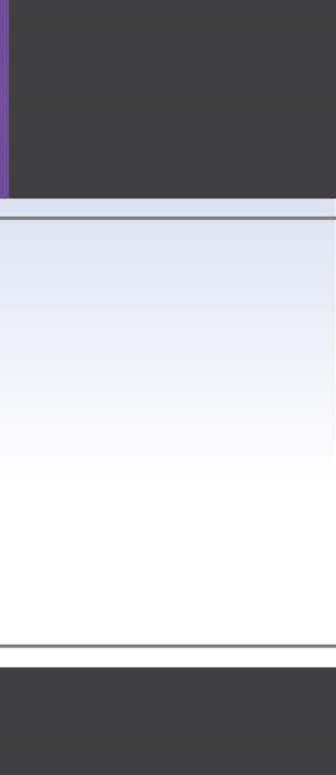
A. Soil Moisture A4. Sprinkler head overlap vs. high soil moisture

A sprinkler head coverage map created from head spacing data combined with radius-of-throw and water pressure data taken from the Lynx data base shows consistent overlap at nearly every fairway sprinkler head. The head layout at xxxxxx results in a 10-20' diameter area around the majority of fairway heads that is overlapped by seven heads while the midpoint between heads is overlapped by 3 or 4 heads on average. The average head spacing on fairways is 59.2 ft. The specified throw radius for heads and nozzles at xxxxxxx is 63-67 ft. depending on water pressure. (This analysis assumes that the actual radius-of-throw matches the throw specified by the head data in the data base.)

The disparity in overlap around heads vs. overlap midway between heads could be a primary cause of repetitive patterns of wet to dry soil moisture around and between heads.

Copyright The Toro Company 2012 All Rights Reserved.

After this information is provided, start checking sprinkler performance with catch can audits in trouble spots. Also check database information and confirm it matches the field hardware.



Justin McClellan

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

GREENSIGHT AGRONOMICS

Making Golf Courses Greener Reducing water and chemical costs while enhancing turf quality

GreenSightAg.com @GreenSightAg

The Challenges

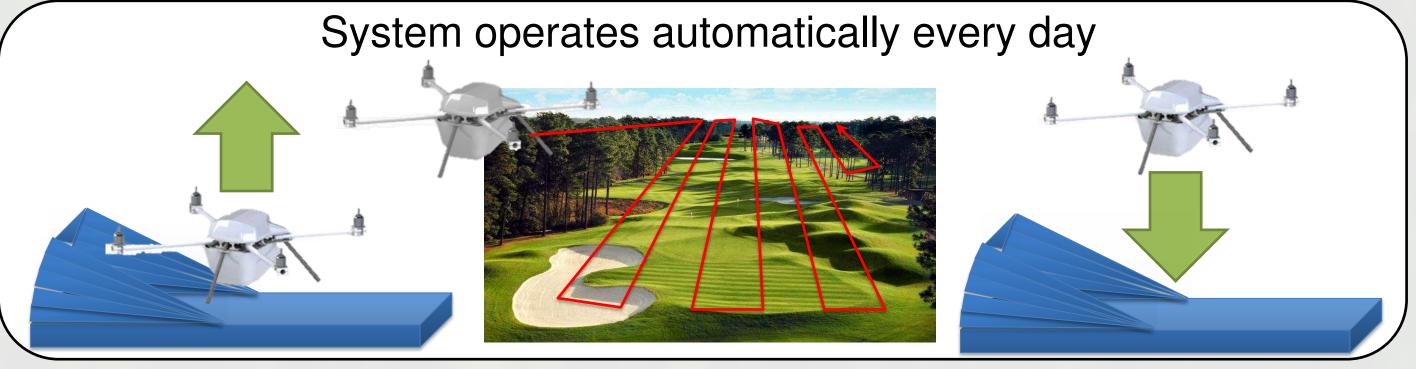
Golf courses face rising irrigation expenses

- National Average: >\$75K/year
- \$500k+ is not uncommon in Southwest

Chemical use must be efficiently managed

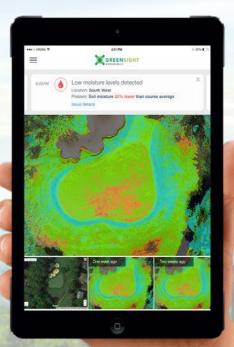
- Chemicals and fertilizer <\$40,000 annually (per 18-holes)
- **Regulation and limitation of treatments**
- Public Pressure to reduce water, chemical use
 - New water regulations •
 - New pesticides/fungicide bans and regulations

Drone Data enables precise application, saving courses 25%



Solution: GreenSight Zero-Labor Turf Monitoring Service

System operates automatically every day

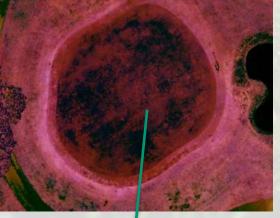

Proprietary System

Machine-to-machine interface Admin via web

Custom Sensor 5x more data

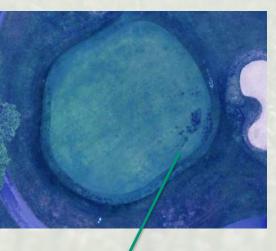
Turfgrass-Specific Analytics Unique add-ons

Completely Automated Flies daily Sends email/text alerts



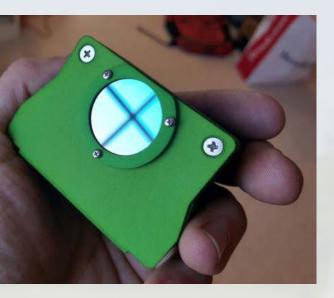
Multi-spectral Imager

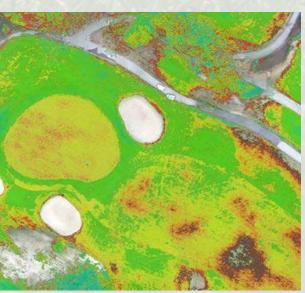
- Custom camera gathers data in multiple wavelengths to detect a variety of conditions
 - Tuned to narrow "color" bands, camera gathers data on reflectance of leaf that is not visible to the naked eye
 - Common issues impact this reflectance in narrow color bands



Nitrogen Deficiency, Red Thread

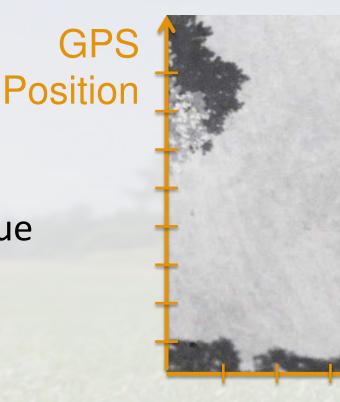
Grubs (root damage)

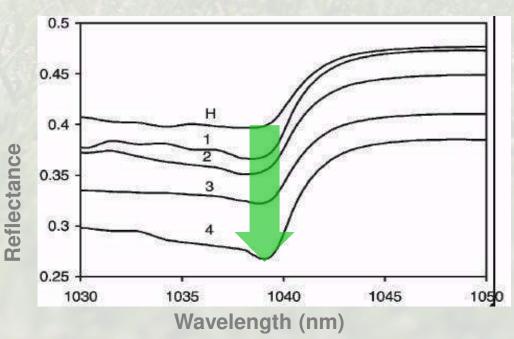


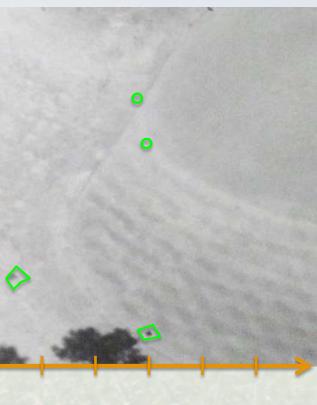

Dollar Spot (fungal infection)

Thermal Imager & Moisture

- True thermal imager measuring temperature
 - Proprietary calibration provides +/- 1 degree accuracy
 - Onboard sensors provide ambient temp, pressure, humidity, & luminosity
- We compute high accuracy temperature differentials
 - Calculate soil moisture based on canopy temperature
 - Greater accuracy than evapotranspiration models
- Compliment to in-ground sensors
 - We add 100% areal coverage
 - ~10cm resolution




Change Detection Analytics


- Pixel Counting Algorithm
 - GPS-referenced-images evaluated
 - Issues show up as high/low intensity
 - Pixels counted, position and "color" of issue logged in our database.
- Change Detection

•

- Our consistent, daily flights enable robust change detection
- Algorithm monitors changes in plant reflectance to gauge issue severity

Drone System

- 4-rotor "Quadcopter"
 - 4 lbs, 24" across
 - Optimized for 45-60 min flight
 - 100-120 acres per flight
- **Fully Automated**
 - **Pre-programmed waypoints**
 - Vision-guided landing in base station
 - Automatic recharge, data download
 - Remotely administered via Wi-Fi, 3G, Ethernet

Potential Benefits With Our System

System provides

- Soil moisture maps covering entire course
- 2. Soil moisture alerts
- Early ID and alerts for common pests 3. (Dollar Spot, Pythium, Grubs)

Efficient chemical application >\$15k/yr

Utilize limited resources more effectively!

Prevention of damage\$1M+ lost revenue or repair

Optimizing labor maximizes turf quality within existing budget

Irrigation optimization saves \$15k-\$100k/yr

Subscription Service

- Subscription pricing starting at \$900/mo
- Hardware is included, warrantied, and upgraded
- Web-based analytics and processing, easy!
- Additional add-on services rolled out regularly

Simple to use, no software or maintenance headaches

2016 Pilot Key Features

- Moisture Monitoring
 - Thermal camera measures temp differentials across entire course
 - Custom analytics calculate moisture at root ball
- Fungal Detection
 - 4 cameras tuned to specific light reflectance of fungus before visible
- Intelligent Processing in the Cloud
 - We tag and tracks Issues over subsequent flights
 - Ie: Ball mark or expanding dollar spot infection

New pest alerts and features rolled out regularly

Current Research

Working With 3 Turfgrass/Ag Research Sites

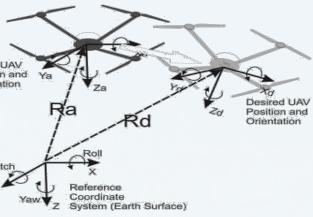
- Drought Stress Research validate moisture analysis on test plots
 - Current technology prototype getting well tested
 - Knitted maps for each part of the spectrum
 - "Change maps" built to highlight daily changes
 - Quantitative metrics for each test plot recorded
 - We track specific changes
 - **Grass temperature differentials**
 - Soil Moisture at rootball
 - Precise areal percentage of: •
 - Discoloration, wilt

Analysis Add-Ons in Our Pipeline

- Pythium blight
- White grubs
- **Poa/Bluegrass detection/severity**
- Tree shade mapping
- Turf Traffic
- **Divots Maps**
- **3D Terrain Maps**, as-built mapping

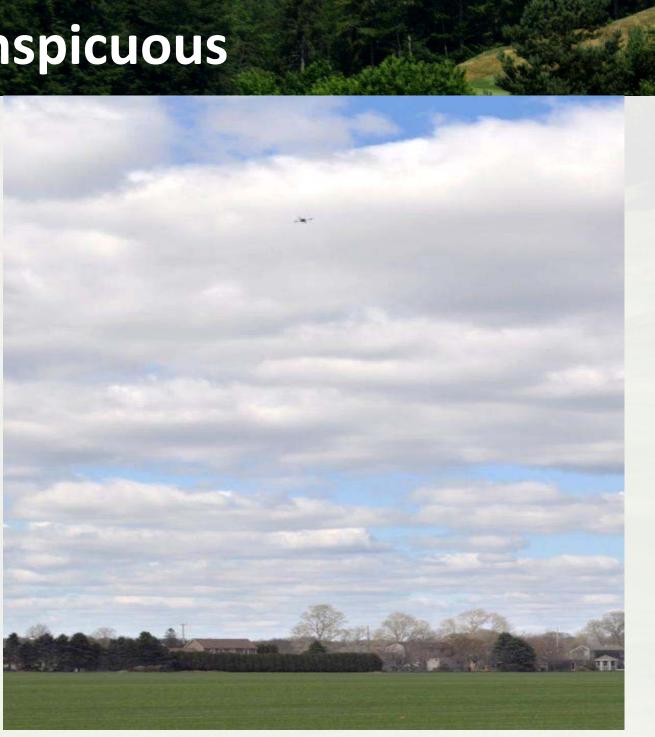
As we gather turf data we can expand offering

Key Feature: Automatic Operation


We have 30+ years developing drones for US Military

- Container opens, drone automatically takes off
- Drone flies over and images entire course based
- Auto-lands in container after flight
- **Container closes**
- Drone downloads images to cloud server and recharges batteries
- Email and Text Alerts about trouble spots

Flight, processing is automatic - you can focus on the Turf


Position and

Key Feature: Inconspicuous

- Flies at 200-300 feet
- 2' x 2' drone is virtually invisible at that altitude
- Uses 4 electric motors, inaudible once it reaches 150 feet
- Base station container is 3' x 3' x 2' and only requires a power cord



Designed to not disturb players

Key Feature: Mobile Accessible Data and Analytics

- Online setup, image processing, analytics, and storage
 - User receives email notifications
 - Details on turf condition along with GPS location of issues and images
- Cloud allows better experience
 - Constant analytics improvements based on data
 - No user software to update
 - No hard drive crashes
 - Simplifies data management

Legality, Liability, Privacy

GreenSight is operating 100% within the legal framework for drone operations

- We have a "333" authorization from the FAA to operate our drones over golf courses
- **GreenSight is fully insured**
- Drone system are insured for injury, death, or damage to property caused by the equipment under proper usage

GreenSight Respects Privacy

- GreenSight will ensuring the privacy of neighbors and players. We don't image adjacent properties
- GreenSight will does not disclose any data or imagery that could identify the course

The GreenSight Team

James Peverill – CEO

Led \$2M white board-to-Afghanistan drone development for US Air Force World class expertise in rapid development of drone products MS Computer Eng. Boston Univ., BSME Brown Univ.

Justin McClellan – CMO

Led \$3M Reconnaissance Satellite R&D Program for DARPA Former Lead for R&D Spinouts and Technology Commercialization MBA and BS Aerospace Eng. Boston Univ.

Joel Pedlikin – COO

VP Engineering | GM of R&D leading 50+ Aerospace Engineers **Developed PacAstro Rocket Engine | Services Startup Founder** MBA Babson, MS Aeronautics CalTech, BSME Brown

John Kaminski, PhD – CAO

Director Golf Course Turfgrass Management Program @ Penn State MS Agronomy, PhD Natural Resource Science Univ. Maryland, **BS Turfgrass Science Penn. State**



Info@GreenSightAg.com GreenSightAg.com @GreenSightAg

GREENSIGHT AGRONOMICS

Questions?

Unique Solutions to Challenging Pumping Problems

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Mike Bartley

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Unique Solutions to Challenging Pumping Problem

VFD introduced into turf market

Benefits:

- Energy saving
- Reduce water hammer
- Auto restarts

Unique Solutions to Challenging Pumping Problem

VFD introduced into turf market

Issues:

- Environment
- Shut trip circuit breakers / contactors
- Boost / isolation transformers
- Surge protection / grounding
- New construction / power surges

∆ ASIC

Unique Solutions to Challenging Pumping Problem

VFD trends in today's market

Challenge:

- Irrigation programs using cycle / soak
- Understanding the customers irrigation practices
- Multiple irrigation controllers on one pumping system
- Multiple sources on one pumping system

Unique Solutions to Challenging Pumping Problem

VFD trends in today's market

Solution:

- Individual drives / load sharing
- Large pressure maintenance pumps

∆ ASIC

Unique Solutions to Challenging Pumping Problem

VFD trends in today's market

Points for discussion:

- Added cost of individual drive
- Additional cooling requirements
- Additional efficiency loses 2% drive efficiency
- When do use XL/VFD bypass contactors
- When to go from a "PM" pump to a Jockey pump

Rex Hansen

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Pump Station Solutions

Rex Hansen P.E. Rain Bird Corporation

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

AASIC

Rotor Placement

ASIC 2016 REGIONAL CONFERENCES

ASIC

Pressure Tanks

A ASIC

Critter Infestation

∆ASIC

Pump Station Vs. Car

▲ ASIC

Excessive Flow Shut Down

Pump House Aesthetics

Test Flow at Commissioning

High Voltage Concerns

AASIC

Air Conditioning

Bankruptcy

ASIC

Installation Surprise

AASIC Pump Stations in the Future

Rick Reinders

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

Rick Reinders, President

rick.reinders@watertronics.com

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

∆ASIC

NAIL BAY WATER TREATMENT AND DELIVERY SYSTEM

▲ ASIC

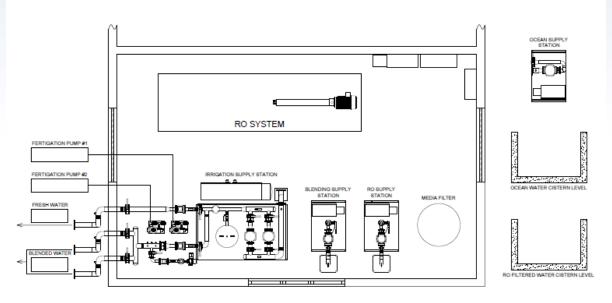
Nail Bay – Project Profile

- Private Residence in British Virgin Islands
- 5 golf holes golf tees can play it like a 27 hole course
- Architect Chris Gray; Consultant AS Altum & Associates
- Contractor Customer supplied with Watertronics supervision

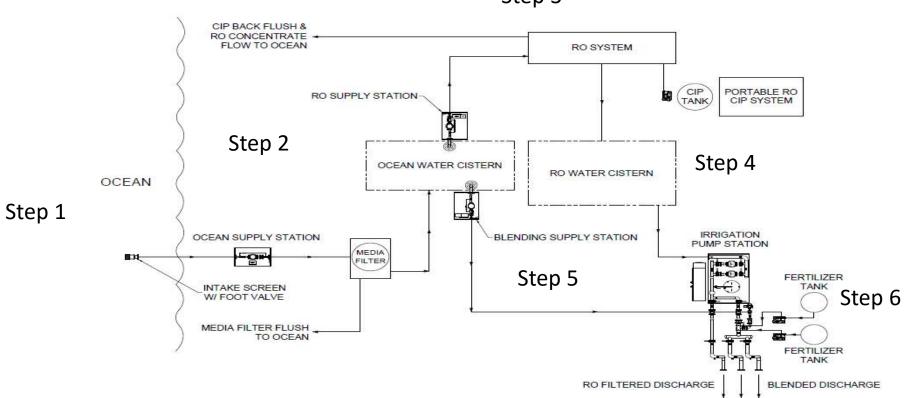
∆ ASIC

Nail Bay: What was the problem?

- > No fresh water source available for irrigation
- > Ambitious owner in need of 300 gallons per minute for irrigation
- Short time line
- Very remote location



A ASIC


Nail Bay: What was the solution?

Complete integrated solution using:

- Reverse Osmosis
- Source Blending
- Media Filters
- Fertigation Injection
- Irrigation pump station
- One Integrated Solution

Nail Bay: How does it work?

Step 3

FACTORY PRE-TESTED

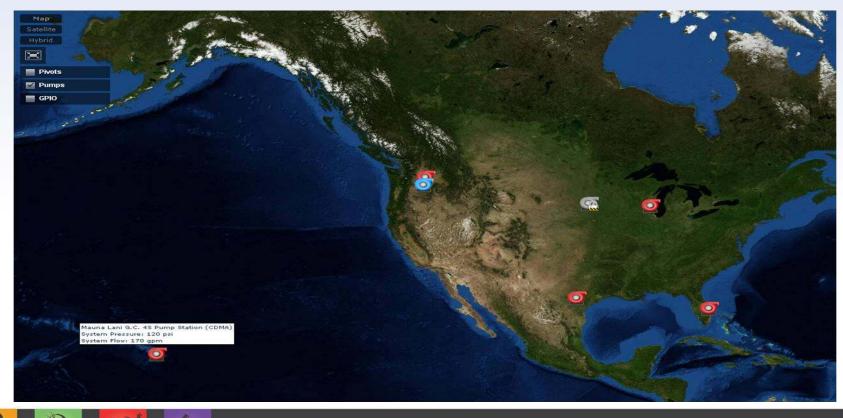
Dynamically tested in our facilityConfirmation of Integrated processes

ASIC Nail Bay: What were the results?

▲ ASIC

Remote Monitoring and Control of all systems

∆ ASIC


WATERVISION CLOUD

🛆 ASIC

MANAGE MULTIPLE PROJECTS

THANK YOU!

Carlos

Dick Young

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

Dick Young Sales Manager

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

Unusual Pumping Situations You Have Encountered and How You Solved Them

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

∆ASIC

Project Companies

- Architect Robert McNeil
- Irrigation Consultant: Joe Sarkisian
- General Contractor NMP Golf Const.

∆ASIC

1/2

65

Challenge 1

										In-season				Off-Season			
										Spring Basin	Full Condition		sin Not Full dition				
Well ID		Transducer Set Depth		Recommended Average Seasonal Yield		Stable Well Yield at End of Fall 2007 Test		Typical Maximum Documented Pumping Rate	Daily Pump On Cycle	Basins are 15th (and in	trol Limits if Full on April any case after ' 30th)	Basins are No 15th (from A	trol Limits if ot Full on April pril 15 to May 0th)	Seasonal Maximum Withdrawal (180- day basis)	Pump Con (from Nove April	mber 1st to	Maximum Off Season Withdrawal (166-day basis)
	Ft.	Ft.	Ft.	GPM	GPD	GPM	GPD	GPM	Hrs.	GPM	GPD	GPM	GPD	Gallons per Season (April 15 to Oct. 31)	GPM	GPD	Gallons per Off Season (Nov. 1 to April 14)
Pond V Well	862	852	842	16.0	23,040	32.0	46,080	62	18	21.3	23,040	29.9	32,256	4,147,200	13.3	14,361	2,383,898
Well 2	315	305	295	13.7	19,728	18.3	26,352	22	18	18.3	19,728	24.0	25,920	3,551,040	0.0	0	3,960
Well 3	295	285	275	10.2	14,688	13.6	19,584	35	18	13.6	14,688	24.0	25,920	2,643,840	0.0	0	
Well 5	525	515	505	14.7	21,168	19.6	28,224	24	18	19.6	21,168	24.0	25,920	3,810,240	0.0	0	
Well 6	580	570	560	23.3	33,552	31.1	44,784	33	18	31.1	33,552	24.0	25,920	6,039,360	19.4	20,913	3,471,552
Well 10	609	599	589	16.4	23,616	21.8	31,392	24	18	21.9	23,616	24.0	25,920	4,250,880	13.6	14,720	2,443,496
Well 12		515	505	15.4	22,176	30.8	44,352	58	8	46.2	22,176	10.7	5,120	3.991.680	0.0	0	
Club House Well	220	210	200	2.1	3,024	2.8	4,032		24	2.1	3,024		0	544,320	0.0	0	0

Challenge 1 – Transducer Depth

Transduc er Set Depth	Low Water Shut Off
Ft.	Ft.
852	842
	-
305	295
285	275
515	505
570	560
599	589
515	505
210	200

AASIC

1/2

8

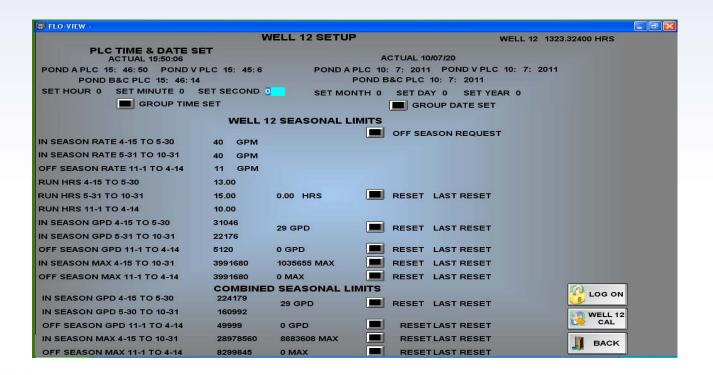
Variable Flow Rates

	Daily Pump On Cycle Pump Control Limits if Basins are Full on April 15th (and in any case after May 30th)		Basins are No 15th (from A	trol Limits if ot Full on April pril 15 to May oth)	Seasonal Maximum Withdrawal (180- day basis)	Pump Control Limits (from November 1st to April 14th		
	Hrs.	GPM	GPD	GPM	GPD	Gallons per Season (April 15 to Oct. 31)	GPM	GPD
Pond V								
Well	18	21.3	23,040	29.9	32,256	4,147,200	13.3	14,361
Well 2	18	18.3	19,728	24.0	25,920	3,551,040	0.0	0
Well 3	18	13.6	14,688	24.0	25,920	2,643,840	0.0	0
Well 5	18	19.6	21,168	24.0	25,920	3,810,240	0.0	0
Well 6	18	31.1	33,552	24.0	25,920	6,039,360	19.4	20,913
Well 10	18	21.9	23,616	24.0	25,920	4,250,880	13.6	14,720
Well 12	8	46.2	22,176	10.7	5,120	3,991,680	0.0	0

Solution

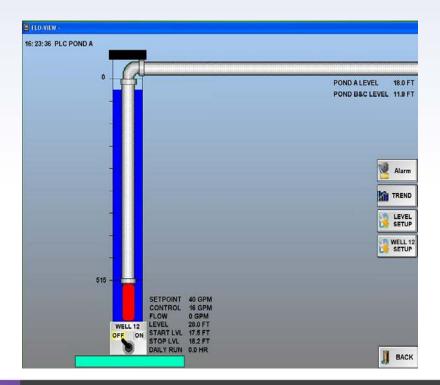
- All well pumps to run on a VFD
- Instead of pressure, change process variable to flow
- Change flow rates based upon date

ASIC


Use Restrictions

• Shut off wells when

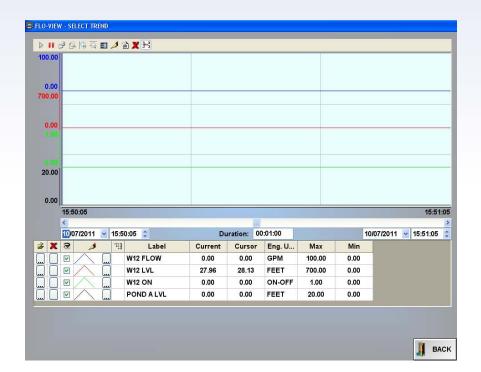
- Daily hour limits reached
- Daily flow total reached
- Annual flow total reached


▲ ASIC

Well Set up Screen

▲ ASIC

Well Monitoring Screen



ASIC

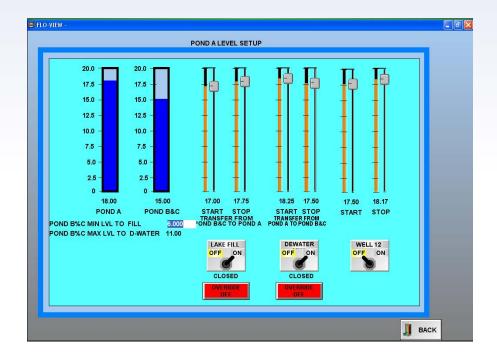
1/2

Well Trending Screen

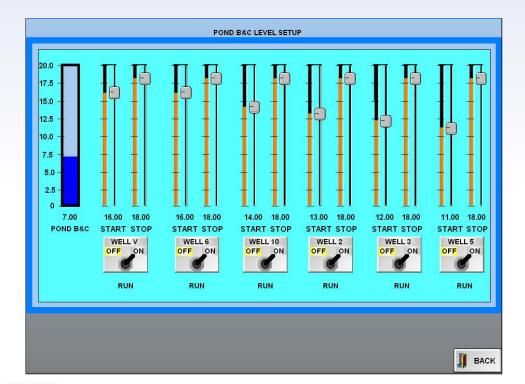
ASIC

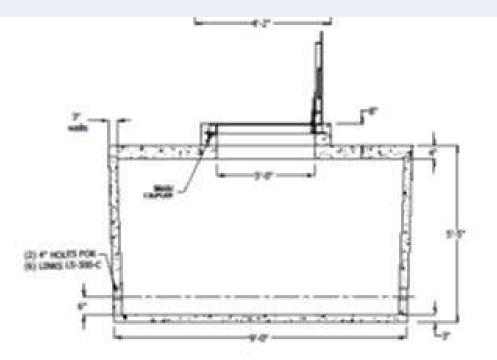
Well Vault Internals

∆ASIC


Well Vault Installed

▲ ASIC


Pond A Level Setup


ASIC

Pond B/C Level Setup

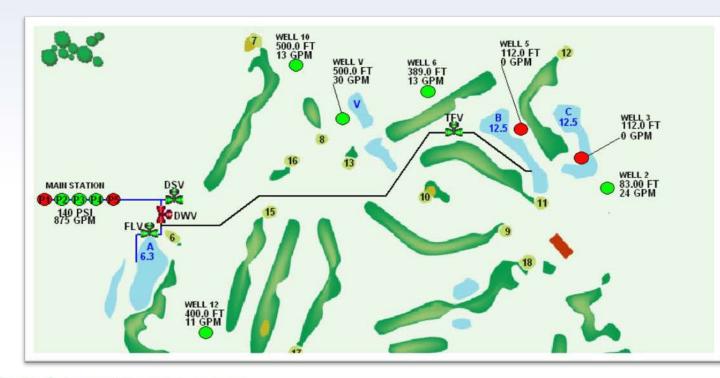
Wells/Transfer to run 12 Months

Several of the wells and the transfer equipment need to run year round. To facilitate that the flow sensors, isolation valves, and flow sensor test ports were installed in concrete vaults below the frost line



ASIC

1/2


65

Transfer Vault

∆ ASIC

Challenge 2

The geography, wells and ponds separated by thousands of feet. Radio communication was a challenge

Thank You

Services, Incorporated

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California