

Through Technology, Best Practices and Awareness

Brent Mecham

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

How to Efficiently Manage Irrigation Using BMPs

OUR STAMP ON THE FUTURE

Through Technology, Best Practices and Awareness

Brent Mecham, CID, CLWM, CAIS, CIC, CLIA

Irrigation Association

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

Through Technology, Best Practices and Awareness

Collaboration between ASIC & IA BMP & Practice Guidelines

- Design
- Installation
- Management

Appendices

- Inspection & Commissioning
- Water Budgeting
- Scheduling

www.irrigation.org/landscapebmps

http://asic.org/our-solutions/best-management-practices/

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

American Society of Irrigation Consultants ASIC 2017 NATIONAL CONFERENCE

Basis of Design [BOD]

Written narrative describing how the irrigation system will meet the functional purposes of the project owner.

How does the irrigation system contribute to water use efficiency and sustainability.

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

Installation

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

Through Technology, Best Practices and Awareness

- Qualified contractors
 - Who are they?
 - How do the prove they are qualified
 - What is the right price?
- WIIFM
 - Inspections
 - Functional performance testing
 - Commissioning

Through Technology, Best Practices and Awareness

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

WR_H = $\frac{((ET_0 \times PF) - R_e) \times LA \times 0.623}{(ET_0 \times PF) - R_e}$ IF

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

Trip Pin Empty Slots Day wheel advance do not move!

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Aware

measure

to manage

Through Technology, Best Practices and Awareness

- Inspections
- Functional performance testing
- Commissioning [Cx]

Through Technology, Best Practices and Awareness

Technology

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

Distribution

American Society of Irrigation Consultants ASIC 2017 NATIONAL CONFERENCE

OUR STAMP ON THE FUTURE Through Technology, Best Practices and Awareness

Discussion or Questions?

American Society of Irrigation Consultants ASIC 2017 NATIONAL CONFERENCE

Through Technology, Best Practices and Awareness

Dr. Bernd Lienauer

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

Turfgrass Water Conservation and Irrigation Efficiency

Bernd Leinauer Professor & Extension Turfgrass Specialist New Mexico State University

Turfgrass Irrigation Requirement Las Cruces, NM (2005 – 2009)

TATE

Turfgrass Irrigation

Las Cruces

Cool-season	50"	
Warm-season	38"	46.4"

Grass Type	1500 ft ²	700 ft ²		
WS	35,500 gal	16,560 gal		
CS	46,700 gal	21,790 gal		

Ecosystem Services: Mitigation of Heat Islands

- Trees and vegetation lower surface and air temperatures
- Shaded surfaces may be 11–25°C (20–45°F) cooler than the peak temperatures of unshaded materials
- Evapotranspiration, alone or in combination with shading reduces peak summer temperatures by 1–5°C (2–9°F)

All About Discovery![™] New Mexico State University aces.nmsu.edu

Strategies for Irrigation Water Conservation

- Artificial Turf 5.
- 2. Reduce area under irrigation
- Irrigation with 3. recycled/impaired water
- Use of low water 4. use turfgrass species

- 6. Increase irrigation efficiency
 - Scheduling |.
 - a) Climate data
 - b) Soil water status
 - ||. Improve Water Distribution

Turf removal

- \$3.75/ft²
- Install a new landscape:
 >no live turf or turf looking plants
 >includes plants (no turf)
- synthetic turf may be eligible

http://socalwatersmart.com

Strategies for Irrigation Water Conservation

- Artificial Turf 5.
- Reduce area under 6. Increase irrigation 2. irrigation
- Irrigation with 3. recycled/impaired water
- Use of low water 4. use turfgrass species

- Accept quality reduction
- efficiency
 - Scheduling |.
 - a) Climate data
 - b) Soil water status
 - ||. Improve Water Distribution

Irrigation with Recycled/Alternative Water

RE-WATER

Story by Leslie Lee

More complicated than just toilet-to-tap, water reclamation helps sustain thirsty cities

REAL PROCESS

The city of El Paso maintains four water reclamation plants.

Water Quality Comparisons

		Ground Water Recycled Water			ed Water	Soa	CBM Wator	po		
		EIP	Paso	Las Cruces	Carls- bad, NM	СА	Las Cruces	Water	(47 Wells)	table
	рН	7.8	6.4	7.3	7.7	7.0	7.5		7.6	7.5
	EC	2.6	1.1	4.0	6.4	2.0	2.3	50	3.0	0.6
	TDS	1,644	710	2,560	3,925	1,266	1,500	34,500	2,010	390
	SAR	11.5	5.2	10.5	6.4	4.8	7.6	39.8	29	1.4
Ņ		Data fror	m Assadian	i, 2006; Asan	o et al., 198	5; Duncan et	al., 2009, and	Rice et al., 20	000	

Salinity Tolerance

Shoot saline ion exclusion central to salinity tolerance

- <u>Salt sensitive plants:</u> accumulate saline ions to toxic levels
- <u>Salt tolerant plants:</u> excrete excess saline ions from shoots

Correcting salinity problems

Remediate sodic vs. saline soils

<u>1) Sodic soils</u>

- Basic (pH > 7)
 o Stabilize structure through Gypsum (CaSO₄)
 - o Acidify irrigation water (e.g. synthetic acid, sulfuric acid)
- Acid (pH < 7)

o Adding lime (CaCO₃ / MgCO₃)

All About Discovery![™] New Mexico State University aces.nmsu.edu Leaching
 Improve Drainage (Surfactant)

- Chamizal National Memorial
- 140 ha irrigated turf area, El Paso, TX
- 46 years irrigated with saline groundwater
- EC = 1.1 dS m⁻¹; SAR = 5.2

Relationship between irrigation system uniformity and soil salinity

NIX STATE All A New aces

Alternate Water Sources and How They Impact the Landscape

In an arid or semi-arid environment, alternate water sources generally have a higher salinity and sodicity than traditional sources:

- 1. Select salt tolerant plants
- 2. Correct salinity problems
 - a) Reduce salt inputs
 - b) Remediate saline/sodic soils:
 - Control calcium and sodium to avoid structural problems
 - c) Avoid soil amendments that increase moisture retention
- 3. High irrigation system uniformity

Strategies for Irrigation Water Conservation

- Artificial Turf 5.
- Reduce area under 6. Increase irrigation 2. irrigation
- Irrigation with 3. recycled/impaired water
- Use of low water 4. use turfgrass species

- Accept quality reduction
- efficiency
 - Scheduling |.
 - a) Climate data
 - b) Soil water status
 - ||. Improve Water Distribution

Turfgrass Irrigation Requirement

 $IR = \sum (A, ETO, ISE, Wq, Kc) f_{(Kc)} Sp, TQ, GDD, PAW, Mi$

- A: Area under irrigation
- ETo: reference Evapotranspiration
- ISe: Irrigation System Efficiency
- Wq: Water Quality
- Kc: Crop coefficient

- SP: Species
- TQ: Turf quality
- GDD: Growing Degree Days
- PAW: Plant available water
- Mi: Management Intensity

Irrigation Water Use > Irrigation Water Requirement

All About Discovery!™ New Mexico State University aces.nmsu.edu

Mean Summer Evapotranspiration Rates of Different Turf Species

ET rate		⁻ rate				
	in/wk	mm/day	COOLSEASON	vvarm season		
	2.0 – 3.5	7.2 – 12.6	Tall Fescue			
	1.8 – 3.1	6.6 – 11.2	Perennial ryegrass			
	1.7 – 2.2	6.2 – 8.1		Seashore paspalum		
	1.6	5.7		Blue grama		
	1.5 – 2.0	5.3 – 7.3		Buffalograss		
	1.0 – 2.2	4.0 – 8.7		Bermudagrass		
	1.3 – 2.1	4.8 – 7.6		Zoysiagrass		
AI	1.1 – 1.8	4.1 – 6.6	Kentucky bluegras	S		
Ne ac	Gaussoin, 2003					

Buffalograss - Water Use (Stewart et al., 2004)

- No difference in water extraction between buffalograss and Kentucky bluegrass for well watered conditions
 <u>Incipient water stress</u>:
- Kentucky bluegrass depleted 50% of soil water to 30 cm depth (6 days)
- Buffalograss depleted 60% of soil water to 90 cm depth (20 days)

Irrigation Water Requirement (1)

- Historically, ET rates determined under non-limiting moisture conditions
- A wide range of ET (within and between species) indicates that water use is affected by many factors, e.g. soil moisture availability and <u>quality</u> <u>expectations</u>
- Consequently, in the context of water conservation, the question is not how much water do turfgrasses use, but what is the minimum amount of water they require to survive and meet desired quality expectations
- Deficit irrigation \rightarrow Kc

Irrigation Water Requirement (2)

- Deficit irrigation is only effective if turf areas receive sufficient rainfall to occasionally recharge the soil profile (Shearman 2008).
- When occasional natural precipitation is insufficient, drought periods need to be followed by periodic increased irrigation amounts for grasses to recover (Baird, et al., 2009; Devitt and Morris, 2008).
- The main drought resistance mechanism from a lack of sufficient irrigation may be dormancy which results in a loss in color and cover.

Study

• 5 Species:

Bermudagrass (3), Buffalograss (2), Kentucky bluegrass (8), Perennial ryegrass (7), Tall fescue (10)

- 5 ETos levels:
 1.15, 1.0, 0.85, 0.7, 0.55
- 3 Years:
 2013 2015
- Data: Visual quality, Green Cover, NDVI

CS Turfgrass Quality Summer 2014

NM STATE

CS Turfgrass Quality Summer 2015

Conclusion

- 1) Traditional cool season grasses may perform adequately even with less water than historically been thought
- 2) "high water use grasses" may perform equally acceptable than "low water use grasses" even at the same reduced amount of irrigation
- 3) In order to make useful recommendations, regional testing under water limiting conditions is necessary
- 4) Consider additional stresses, e.g. salinity, traffic

Strategies for Irrigation Water Conservation

- Artificial Turf
- Reduce area under 6. Increase irrigation irrigation
- Irrigation with recycled/impaired water
- 4. Use of low water use turfgrass species

Accept quality reduction

- efficiency
 - Scheduling |.
 - a) Climate data
 - b) Soil water status

aces.nmsu.edu

Strategies for Irrigation Water Conservation

- Artificial Turf
- Reduce area under 6. Increase irrigation irrigation
- Irrigation with recycled/impaired water
- 4. Use of low water use turfgrass species

Accept quality reduction

- efficiency

 - ||. Improve Water Distribution

Irrigation Efficiency

- Mecham (2004): Summary of uniformity data from over 6800 irrigation audits (Utah, Nevada, Colorado, Arizona, Texas, Oregon, and Florida)
- Average DU of 0.5

The amount of irrigation water doubles compared to what **"the grass plant needs" to maintain an adequate quality** level

XFS Subsurface Dripline

Change Language

0.

Conclusions

- 1) Subsurface drip irrigation can be used to irrigate turf efficiently
- 2) also in combination with saline water
- 3) is a viable alternative to traditional sprinkler systems if installed, monitored, and maintained properly
- 4) More education and public outreach needed to promote technology

Irrigation effect on brown patch (Rhizoctonia sp.) occurrence

STATE

Las Campanas, NM

Las Campanas

					Emitter		Delivery/hour	Delivery/hour
Course	Tee	Product	Area (ft ²)	Spacing	(gal/hour)	Emitter #	(gal)	(in)
Sunrise	5	Toro	746	9	0.5	995	1990	0.80
Sunrise	11	Rainbird	314	12	0.42	314	748	0.67
Sunrise	13	Toro	236	12	0.5	236	472	0.8
Sunrise	14	Rainbird	324	12	0.42	324	771	0.67
Sunrise	14	Control	503	DU=0.79				0.98
Sunset	6	Rainbird	760	9	0.42	1013	2412	0.67
Sunset	15	Control	590	DU=0.68				1.51
Sunset	18	Toro	375	12	0.5	375	750	0.8

References (1)

- Schiavon, M., B. Leinauer, M. Serena, B. Maier, and R. Sallenave. 2014. Plant Growth Regulator and Soil Surfactants' Effects on Saline and Deficit Irrigated Warm-season Grasses: I. Turf Quality, Color Retention, and Soil Moisture Distribution. <u>Crop Science</u> doi: 10.2135/cropsci2013.10.0707
- Schiavon, M., B. Leinauer, M. Serena, B. Maier, and R. Sallenave. 2014. Plant Growth Regulator and Soil Surfactants' Effects on Saline and Deficit Irrigated Warm-season Grasses: II. Pigment Content and Superoxide Dismutase Activity. <u>Crop Science</u>. doi: 10.2135/cropsci2013.10.0708
- Ganjegunte, G., B. Leinauer, M. Schiavon, and M. Serena. 2013. Using Electro-Magnetic Induction to Determine Soil Salinity and Sodicity in Turf Root Zones. <u>Agronomy Journal</u> 105:836–844.
- Sevostianova, E., B. Leinauer, R. Sallenave, D. Karcher, and B. Maier. 2011. Soil Salinity and Quality of Sprinkler and Drip Irrigated Warm-Season Turfgrasses.
 <u>Agronomy Journal</u> 103:1773-1784.
- Sevostianova, E., B. Leinauer, R. Sallenave, D. Karcher, and B. Maier. 2011. Soil Salinity and Quality of Sprinkler and Drip Irrigated Cool-Season Turfgrasses.
 <u>Agronomy Journal</u> 103:1503-1513

References (2)

- Serena, M., B. Leinauer, M. Schiavon, B. Maier, and R. Sallenave. 2014. Establishment and Rooting Response of Bermudagrass Propagated with Saline Water and Subsurface Irrigation. <u>Crop Science</u> 54: 827-836.
- Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2013. Establishing tall fescue and Kentucky bluegrass using subsurface irrigation and saline water. <u>Agronomy Journal 105</u>:183-190.
- Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2012. Bermudagrass and Seashore Paspalum Establishment from Seed Using Differing Irrigation Methods and Water Qualities. <u>Agronomy Journal</u> <u>104</u>:706-714.
- Schiavon, M., M. Serena, R. Sallenave, B. Leinauer, and J. Baird. IN PRESS. Seeding date and irrigation system effects on establishment of warm-season turfgrasses. <u>Agronomy Journal.</u>
- Sevostianova, E. and B. Leinauer. 2014. Subsurface-Applied Tailored Water: Combining Nutrient Benefits with Efficient Turfgrass Irrigation. <u>Crop</u> <u>Science 54</u>:1926-1938. doi:10.2135/cropsci2014.01.0014

Acknowledgements

Aquatrols BARENBRUG

leinauer@nmsu.edu

@NuMex_Turf

OUR STAMP ON THE FUTURE

Through Technology, Best Practices and Awareness

Rob Welke

American Society of Irrigation Consultants | ASIC 2017 NATIONAL CONFERENCE

13

14

15

		20 1 2 2
Integration Punging Energy (Blatescy Assessment Tool IPEEAT ©nev on EFE APPEND A DEVENDENTION		TALLEMENCO Energy Efficiency for Irrigation
ELECTRIC P	UMPING Overant	rite raw data into cells highlighte
Location	Greener Law	n, Windsor, NSW
VARIABLES	Choice/Units	INPUTS
Emitter category	CP/LM/ikoom, Gun, Knocker/ Drip/Spray, Flood, Transler, Pip Marine	/Rotor, e & Riser, CP LM Boom
Motor Type	Surface or Submersible	e Surface
If surface motor	Direct coupled or beit ship	re M Belt
If subby/turbine pump	is riser pipe >20m7 m	no no
Filter type	Filter, Hydrocyclone, New	e* none
Layflat	yes/no	Yes
Residual Pressure"	KPa	150
Water numned****	ML/vr	140
kWh consumed***	kWh/yr	57,107
Electricity cost	\$\$/vr	13,705
Electricity tariff	cents/kWh (derive	d) 24-0
RESULTS (in green cells)		Calculate
Actual Pumping Cost	\$5	/ML 97.9
Achievable Pumping Cos	st \$\$	/ML 42.7
Achievable Electricity Co	st \$\$	/yr \$5,982
Potential Electricity Savia	ags SS	/yr 57,723
Potential Electricity Savi	aga .	78 30%
	Prigition Annalige Garage Mite IPEEALTI, DECENT Location VARIABLES Imitter category Motor Type If surface motor If surface motor Interview Residual Pressure* Residual Pressure* Active Varia Pumping Cost Active Varia Betricting Savi	Prigition Pumping Congr (Hilling Aussential Tool IPEEAT © Inc. 10 Constrol on VARIABLES Constrol on VARIABLES CONSTRUCTION OF Particle Constrol on VARIABLES CONSTRUCTION OF CONSTRUCTION OF Particle Constrol on Particle Particle Constrol on Particle Particle Constrol on Particle Particle Constrol on Particle Particle Particle Particle Particle Constrol on Particle Particle Par

