

ASIC 2016

CALIFORNIA REGIONAL CONFERENCE May 15 – 16, 2016 San Luis Obispo, CA

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Tim Barr

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

California's Drought and Water Use Efficiency

Tim Barr, Director of Water Resources Western Municipal Water District of Riverside County

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Unprecedented Conditions

Calendar Year 2013 Driest on record January 2014 Lowest snowpack WY 2014 4th lowest runoff 2014 State Water Project Allocation 5% - lowest **2014** Temps **Record high temperatures**

Unprecedented Conditions

Extraordinary Actions

- April 1, 2015
- Lowest snowpack ever recorded
- Executive Order

ASIC 2016 REGIONAL CONFEREN

• Reduce Urban Water use 25%

SWRCB End-user requirements

- No landscape runoff
- Do not wash down sidewalks, driveways, etc.
- Decorative fountains must recirculate
- Do not irrigate in rain or within 48 hours following
- Median irrigation of turf using recycled or nonpotable only
- Landscape requirements for new construction
- Ask for drinking water at a restaurant
- Hospitality industry information about linen washing

SWRCB Mandatory Actions by Water Suppliers

- Notify customers of known leaks
- Report monthly production information to State Board
- Reduce potable urban 8-36 percent relative to 2013
- Reduction effective June 1, 2015
- Reductions measured monthly (15th of following month)
- Reductions assessed by State Board on cumulative basis

Goal: Save Available Supplies

Californians Stepped Up!

 1,186,966 acre-feet (386.8 billion gallons) of water saved

- This is 96% of savings goal
- Savings is enough to provide 5.9 million Californians (15% of state population) with water for one year

Western Municipal Water District

- 527 square miles of western Riverside County
- Population of nearly 1 million...
 1.5 million by 2030
- 25,000 retail customers
- 13 retail agencies
- Metropolitan Water District member agency

Western's plans for our communities' future include local supply development and water use efficiency.

Planning for Our Communities' Future

ASIC 2016 REGIONAL CONFER

Local supply development:

- Groundwater clean up and desalination facilities
- Groundwater basin recharge
- Expansion of recycled water
- Conjunctive use partnerships
- Stormwater capture

Planning for Our Communities' Future

Water Use Efficiency Master Plan 2008

- Allocation-based Rate Structure
- Education & Workshops
- Customer Support
- Incentives & Free Stuff

Customer support and incentives

ASIC 2016 REGIONAL CONFER

Western offers <u>free</u> landscape efficiency evaluations to assist commercial and residential customers.

- Prioritizes repairs and provides photos of problem areas
- Funnels water users to other support programs

Customer support and incentives

ASIC 2016 REGIONAL CONFER

Premium rebates for select devices:

Smart Controllers \$300

FreeSprinklerNozzles.com

Turf Replacement Program:

- 6 million square-feet replaced in '15
- \$12 million (\$2/sqft rebate)

Education and Workshops

Master Gardener Partnership

- Workshops
- Workdays
- Plant Sales
- Expert Expo
- Garden Docents

Education and Workshops

Water Saving Garden Friendly Partnership

 Western partners with local agencies to provide information and choices on water-wise plants <u>watersavinggardenfriendly.com</u>

Regional Water-wise Landscape Contest

 Western sponsors a contest every two years open to residents <u>inlandempirelandscapecontest.com</u>

Rate Structure: Residential

Tier pricing is based on the cost of service at each level of water use.

Customers Embracing Efficiency

Reducing Water Budgets

(a simplified view <u>after</u> the mandated 32% reduction)

Customer Water Use ——

Methodology Matters

ASIC 2016 REGIONAL CONFEREN

Applying a 32% Conservation Target to the 2013 Base Period resulted in a 62% community impact!

Cumulative Progress Report

- Cumulative reduction through Feb 2016 was 23% percent
- Is Western a bad actor by missing the 32 percent target?

Considering reductions prior to the 2015 mandate, Western's customers reduced by more than 50%.

Rate Structure: Landscape Budget

Rate Structure: Landscape Budget

Rate Structure: Landscape Budget

February 2016

"Still too early to declare emergency over"

SWP Allocation still 10% (12/1/15)

Developed a complex system of adjustments based on:

- Climate
- Population Growth
- Post 2013 Resilient Supplies
- 8% cap

April 1, 2016 - Cumulative Northern Sierra Precip. at 124% of average

April 1, 2016 - Northern Sierra Snowpack at 94% of average

Flood control releases occurring at key reservoirs

Lake Oroville – March 2016

"It doesn't feel like an <u>emergency</u> anymore."

1-

Executive Order by the Governor

SWRCB staff proposal (Many 18, 2016)

Retain many of the end user prohibitions and supplier reporting

Suppliers self-certify that they have enough water to meet demands in 2019 using the last three years in the calculation

Long-term Water Efficiency in California

California Urban Water Policy should:

- Achieve high levels of local efficiency by:
 - Encouraging investments in local water supply development and demand management programs;
 - Establishing a reasonably defined bar for residential and landscape water use; and,
 - Incentivizing California's end users to replace nonwater conserving devices and landscapes.

Long-term Water Efficiency in California

California Urban Water Efficiency Policy should:

- Incorporate considerations for diversity in supply availability, supply portfolios, regional climate, population trends, housing density and past conservation activities; and,
- Require common-sense prohibitions on end user water waste activities such as irrigation over spray and run off into curbs and gutters; and,
- Utilize water use standards developed by subject matter experts.

Long-term Water Efficiency in California

California Urban Water Efficiency Policy should <u>not</u>:

- Apply mandates without considering water supply availability at the local level;
- Assume that high water use is the same as inefficient water use;
- Apply different standards to a population based on geographic location; or
- Disadvantage one region of the State over another

MWELO Update & Panel Discussion Joe Berg, Peter Estournes & Jon Wreschinsky

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Dr. Stuart Styles Brianna Greenlaw Cody Trueblood

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Ernie Righetti Memorial Weather Station

moving water in new directions

Irrigation Training & Research Center (ITRC) California Polytechnic State University (Cal Poly) San Luis Obispo, CA 93407-0730

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

AASIC

Consists of:

DWR CIMIS Station #52

California Irrigation Management Information System is an automated weather system which automatically records and sends hourly data to the local DWR office.

It measures:

- Evapotranspiration
- Precipitation
- Solar radiation
- Vapor pressure
- Air temperatures
- Relative humidity
- Dew point
- Wind speed
- Soil temperature

NOAA WXCoder Manual Rain Gauge

ASIC 2016 REGIONAL CONFERE

Daily precipitation is recorded every day and sent to the local National Oceanic Atmosphere Administration office.

Data can be accessed at: www.itrc.org/databases/precip

Adcon Automated Weather Station

System automatically records and sends data to a server, which then puts real-time data on the internet.

Measures:

- Precipitation
- Temperature
- Relative Humidity

Data can be accessed at:

http://apro.mccrometer.net/secure/common/main.vm Username: guest_ITRC Password: ITRC

∆ ASIC

Fisher & Porter Rain Gauge

- This gauge weighs the precipitation it collects in a large metal bucket.
- Observer sends the monthly data to the local NOAA office.
- Designed to work in remote and harsh environments.

Cotton Region Shelter

- Max and min thermometers measure temperature extremes in a well-ventilated shelter.
- Observer records the data daily at 4 pm and sends to the local NOAA office.

Data can be accessed at: www.itrc.org/databases/precip

∆ ASIC

2014-15 Quality Control Check

Primary Gauges					
Summary of Rainfall Data at Cal Poly Stations (in inches)					
Date		NOAA WX Coder Manual Gauge	NOAA Automated Fisher & Porter Gauge	ADCON Gauge used by NOAA	CIMIS Station 52 Automatic Gauge 1
		[1]	[2]	[3]	[4]
Jul	2014	0.00	0.00	0.00	0.00
Aug	2014	0.00	0.00	0.00	0.00
Sep	2014	0.00	0.00	0.00	0.00
Oct	2014	0.00	0.00	0.02	0.94
Nov	2014	0.51	0.42	0.54	0.48
Dec	2014	5.89	5.73	5.69	5.49
lan	2015	0.12	0.11	0.13	0.12
Feb	2015	2.31	2.55	2.32	2.33
Mar	2015	0.02	0.01	0.01	0.00
Apr	2015	1.49	1.69	1.36	1.30
May	2015	0.18	0.16	0.17	0.17
Jun	2015	0.00	0.00	0	0.02
	Total	10.52	10.67	10.24	10.85

Sources: 1) Maintained by Dr. Stuart Styles - Cal Poly ITRC located at historical weather station for Cal Poly San Luis Obispo 2) Data from the NOAA automated gauge at IPF - https://ols.nndc.noaa.gov/sub-login.html -- hourly data (needs to be QC'd by NOAA) 3) Maintained by Dr. Stuart Styles - Cal Poly ITRC, htt://demousa.adcon.com:9090 4) Collected by CIMIS through the Department of Water Resources - Station 52 - http://www.cimis.water.ca.gov/cimis/frontDailyReport.do

2015-16 Quality Control Check

Date		NOAA WX Coder Manual Gauge	NOAA Automated Fisher & Porter Gauge	ADCON Gauge used by NOAA	CIMIS Station 52 Automatic Gauge
-		[1]	[2]	[3]	[4]
Jul	2015	1.37	1.30	1.32	1.30
Aug	2015	0.00	0.00	0.00	0.00
Sep	2015	0.05	0.05	0.00	0.02
Oct	2015	0.13	0.00	0.01	0.07
Nov	2015	1.78	1.45	2.24	1.61
Dec	2015	2.50	2.20	2.73	2.63
Jan	2016	6.85	4.48	6.63	6.18
Feb	2016	0.70	0.68	0.00	0.66
Mar	2016	5.84		6.05	5.18
Apr	2016	0.25	1.1	0.27	0.22
May	2016				
Jun	2016		11-2-0-1	- T	
Total		19.47	10.16	19.25	17.87

Primary Gauges Summary of Rainfall Data at Cal Poly Stations (in inches

Sources: 1) Maintained by Dr. Stuart Styles - Cal Poly ITRC located at historical weather station for Cal Poly San Luis Obispo

2) Data from the NOAA automated gauge at IPF - https://ols.nndc.noaa.gov/sub-login.html -- hourly data (needs to be QC'd by NOAA)

3) Maintained by Dr. Stuart Styles - Cal Poly ITRC, htt://demousa.adcon.com:9090

4) Collected by CIMIS through the Department of Water Resources - Station 52 - http://www.cimis.water.ca.gov/cimis/frontDailyReport.do

146-Year Graph

ASIC 2016 REGIONAL CONFERENCES

▲ ASIC

AASIC San Luis Obispo Precipitation Chart

Any Questions?

3

Bartleson Ranch Irrigation Design

BioResource and Agricultural Engineering BioResource and Agricultural Engineering Department California Polytechnic State University San Luis Obispo 2016

Summary

- Design Purpose
- Constraints
- Field Survey
- Field Layout
- Operation
- Critical Path
- IRRICAD
- Cost Analysis

Design Purpose

- Bartleson Ranch wants to convert a stumped Avocado orchard which has not been able to come back into production
- The design was created to replace an existing orchard of Avocados with Lemons
- The main change in the design is the tree spacing will change from 20' x 40' to 14' x 20'

∆ ASIC

Constraint

- The irrigation design had multiple constraints
- 4 inch manifold in place
- Location of manifold at head of the field
- 6 inch mainline in place
- Preference to use single line hose with Netafim 1 GPH PC emitter
- Use of spaghetti hose with emitters
- 8 emitters used per tree

Field Survey

• Conducted with total station and data collector

- Measured elevation and position
- Determined field size of 7.6 acres
- Data derived in AutoCAD

Field Layout

- Tree row layout followed contours and existing pipeline
- Total of 41 rows
- Maximum row 37 trees
- Minimum row 7 trees
- Total number trees 1106

Operation

- Calculated total flow required 146 GPM
- Hours of operation determined to be 24 hours per week
 - Calculated to meet ET demand
 - Used ITRC ET value 4 in/month in zone 3 for Citrus

Critical Path

- Critical path determined by emitter with lowest operating pressure
- Emitter pressure range 7-45 psi
- Predicted path based on contour lines
- Calculated pressure at each emitter with assumed inlet pressure
- Found critical emitter value changed hose diameter to reduce losses
- Required inlet pressure d/s of valve 18 psi
 - Lowest emitter operating pressure 8 psi
 - Maximum emitter operating pressure 29 psi

Critical Path (cont)

- Critical Path (right)
- Emitter Pressure (left)

∆ ASIC

IRRICAD

- Irrigation Design Software Program
- Simple and easy to use
- Efficient
- Difficult to get exact library

∆ ASIC

IRRICAD Steps

- Import field layout (Google Earth)
- Convert elevations to contours
- Draw spray irrigation block
- Draw mainline
- Draw water source
- Analyze system
- Run report

AASIC

Cost Analysis Comparison

Material List and Prices						
Length/Number	Description	Weight per foot	Unit Price	Total Price		
	Submain and Manifold Materials					
810	4" CL 100 PIP pipe	0.993	\$1.15	\$924.98		
1	4 inch valve		75	\$75.00		
	Lateral/Hose Material					
64	1.06 inch diameter hose (250ft)		\$69.98	\$4,478.72		
8848	Netafim Emitter 01PC4 1 GPH		\$0.23	\$2,035.04		

1/2

Total	\$7 <mark>,</mark> 513.74

Zone Name : Area no. 1				
Length/Number	Description	Unit Price	Price	
811	4" Class 125 IPS SW PVC Pipe	1.20	974.11	
15,526	1" Class 200 IPS SW PVC Pipe	0.16	2,483.65	
965	1/2" Class 315 IPS SW PVC Pipe	0.10	96.51	
1	4" Fresno Butterfly Lever OP	78.00	78.00	
1	2" Nelson Solnoid ON/OFF Valve	345.00	345.00	
8,873	1 GPH Dripper (Press Comp)	0.20	1,774.60	
8,873	1G PH 360.0	0.00	0.00	
Total			al 5,751.88	

Mainline (Main Water Supply - Supply no. 1)					
Length/Number	Description	Unit Price	Price		
11	6" Class 125 IPS SW PVC Pipe				
		Total	30.51		

Results and Recommendation

- IRRICAD performed as well as BRAE 414 irrigation design methods
- IRRICAD is simple to use although it is missing components
- It is recommended to install flush out manifolds on the design
- Manifold replacement, place manifold in center of field and reduce ends of the manifold to burn up friction and reduce costs

Questions?

33

Irrigation Training and Research Center

Center of Excellence

BioResource and Agricultural Engineering (BRAE) Department

moving water in new directions

ITRC Bylaws

- Support the Cal Poly academic irrigation teaching program.
- Improve the irrigation/drainage conditions in California and the USA/World

- Water Resources Facility
- John L. Merriam Irrigation Practices Field
- Office Building

200

Student Hours Average over 11,000 per year

AASIC

California Agricultural Irrigation Dealers examining drip filter backflushing

Technical Areas by ITRC

- ✓ Innovative research
- ✓ Pragmatic training
- ✓ Cutting-edge technical support
- Supports Cal Poly BS and MS academic Irrigation & Drainage programs

- ✓ Irrigation district modernization
- ✓ On-farm irrigation
- ✓ Water balances
- ✓ Automation/SCADA
- ✓ Energy conservation
- ✓ Water conservation
- ✓ Flow Measurement
- Crop Water Consumption

Clients of ITRC

- ✓ Irrigation Districts (e.g. MET)
- ✓ Federal Water Agencies (e.g. USBR)
- ✓ Irrigation Dealers

- ✓ State Agencies (e.g. DWR)
- ✓ Growers
- ✓ Manufacturers

ITRC Activities

Research and Testing – 25%

<u>Training – 10%</u>

<u>Technical Assistance – 65%</u>

∆ ASIC

Example Research Projects:

Salt accumulation under drip irrigation

Research – Long-term salinity buildup on the west side of the San Joaquin Valley <u>DRIP irrigation</u>

A ASIC Research – ET reduction of pistachios with Kaolin spray

ASIC 2016 REGIONAL CONFERENCES

•

AASIC

Research – Canal Seepage Reduction

Irrigation District	Compaction			1.0	%
	Sides	Bottom	Cost, \$	L, ft	Seepage Reduction
Chowchilla WD	Y	Ν	4,845	4,240	12*
James ID	Y	Y	3,240	1,010	86
James ID	Y	Ν	15,800	10,238	31
San Luis Canal Co.	Y	Y	1,945	1,730	89
San Luis Canal Co.	Y	Y – with ride-on	3,100	3,020	90

ASIC Research – Effects of sprinkler-only, partial sprinkler/drip, and drip-only on strawberry transplants

Objectives:

- Keep strawberry transplants healthy
- Switch to drip irrigation as early as possible

Main Issues:

- Soil salinity management
- Uncollected sprinkler irrigation run-off

Keys to Implementation:

- Real-time soil salinity sensors
- Correct drip irrigation design and management
- Demonstration-scale plots

ASIC 2016 REGIONAL CONFERENCES

Funding by: California Department of Food & Agriculture and US Bureau of Reclamation - Mid Pacific Region

AASIC

1/2

Evaluation of Drip on Alfalfa – HayDay Farms – Blythe, CA

Research – Magical Magnets from Australia

ASIC 2016 REGIONAL CONFERENCES

Magnets

- Increase infiltration and decrease deep percolation
 - Reduce cardiac problems
- Reduce water usage by 30-50%
 - Increase yields by 30-50%
 - Improve gas mileage

- Truly amazing if you actually believe this stuff!

Hydraulies of Commercial Sand Media Filter Tanks used for Agricultural Drip Irrigation http://www.itrc.org/reports/mediafilters.htm ITRC Report No. R 10-001

Commercial Sand Media Filter Tank Criteria for Energy Efficiency - Agricultural Drip Irrigation

Research – Reducing energy requirements for drip irrigation

September 2010

How about PC emitters?

Most PC emitters today are high quality.

AASIC

How about PC microsprayers?

They aren't nearly as good as the low flow PC emitters.

- High pressure requirements
- Varying flows with pressure changes
- Often the flow isn't the nominal flow

AASIC

ITRC Activities

IRRIGATION TRAINING AND RESEARCH CENTER California Polytochnic State University San Luis Obispo, CA 93407 Microirrigation for Landscape August 28, 2003 Sponsored by: USBR, Mid-Pacific Region

Front row L-R: Wendy Hallinan (Sunrayita Institute of TAFE), Cathie Paré (City of Santa Barbara), Gany Imazumi (UC Berkeley), John Farinelli (Watson Ag Irrigation), Dibhod Kimanov, Mark White (Placer County RCD), Garey Porter (Netafim USA), Brace Winn (Hydrates), Dave Astrami (Agreentular) Product).

2^{ef} row L-R: Miggel Horrera (Fortier & Fortier), Bob Walker (Instructor, ITRC), Satilallo Nurov, Nemaijon Azirov, Paul Marina (Netafin USA), Rob Brodenson (Coneja Recreation & Park Dutrict), Nick Turner (Conejo Recreation & Park District), Rafael Battle (Rain Bird), Pilla Edhaci (Agricultural Products), Bichard Oflando.

∆ ASIC

Training

- Designer/Manager School of Irrigation
 - Summer
 - On-farm
 - Multiple, 1-3 day classes
- Irrigation District School of Irrigation
 - Winter
 - Flow measurement, canals, SCADA, etc.
- Many custom, on-site classes

AASIC

Example

ITRC Designer/Manager School of Irrigation <u>2.5 weeks – every August</u>

- Soil/Plant/Water
- Basic pipeline hyd.
- Basic pumps
- Advanced pumps
- Annual crop drip
- Fertigation
- Drip/micro design

- Drainage and scheduling
- Landscape spr. design
- Landscape water auditing
- Landscape drip design

We are rewriting this old but very popular publication

Drip and Micro Irrigation Design and Management

for Trees, Vines, and Field Crops Practice plus Theory

4th Edition - 2011

Charles M. Burt, Ph.D., P.E. Stuart W. Styles, D.E., P.E.

Irrigation Training and Research Center (ITRC) BioResource and Agricultural Engineering (BRAE) Dept. California Polytechnic State University (Cal Poly) San Luis Obispo, California 93407-0730 The book used by The Irrigation Association.

Essential for training irrigation <u>designers</u> in California.

5th Edition out in June 2016

New web-based irrigation evaluation training modules

DIRECT TECHNICAL ASSISTANCE

33

▲ ASIC

ITRC Water Projects in the Western US

Modernization plan – Klamath Basin

∆ASIC

Current SCADA Projects (examples)

- Glenn-Colusa Irrigation District
- Modesto Irrigation District
- Henry Miller Reclamation District
- Colorado River Indian Tribes
- Pecos Valley Artesian Conservancy District
- West Stanislaus Irrigation District

▲ ASIC

Modesto Irrigation District

(45)

STAN A

ASIC 2016 REGIONAL CONFERENCES

1/2

SCADA-Related Automation Projects - Examples

Central California Irrigation District (CCID)

Check structures performing U/S and D/S level control in 2 - 60-mile canals

ASIC Providing districts with new options

ITRC WEIR STICK (extremely basic)

Multi-Purpose:

- Measure flow rate over a weir
- Pull boards
- Set boards
- Clear debris from water
- Walking support
- Animal defense stick

ASIC

n

Palmdale and Lancaster

Municipal Effluent Disposal 27 Center Pivots

ASIC 2016 REGIONAL CONFERENCES

Proceso de METRIC, usando LANDSAT y datos climatológicos para averiguar el uso consuntivo de agua.

UEEP

Hopefully, this provides an idea of what ITRC does...

Questions?

Gloria Broming

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Bringin' water to the urban farm!

A look into the design and operational considerations for irrigation and water needs
Sendero Farm, Rancho Mission Viejo

Urban Farming in Agrihoods - The New Normal

Farm Design Aesthetics

When the norm doesn't always apply...

Is that a hose bib? Valve? Or...

Raised beds v. In-ground

Designing for a farm and not a lawn

- Macro consideration of space
- **Crop needs**
- Flexibility
- Efficiency both cost and usage
- Management
- Soil Composition

Liquid Gold...sometimes

Don't grow lettuce in the summer!

- High: Turf/Celery
- Moderate:
 Mediterranean/Lettuce
- Low: Succulents
- Very Low: Cacti and Natives, Dry Farming Tomatoes, Potatoes and Winter Squash

Water Needs Comparison

		Water Need	is Comparison	1	
Water Usage	Images	Ornamental	Edible	Sippers once established	Images
High	The second	Turi	Broccoli, cabbage, celery, cauliflower, lettuce and watercress		Biccov.
Moderate		Ash, fan paim, sycamore	Stone Fruit: Peach, plum, avocado, apples, citrus, Tomatoes, peppers	Water to establish then less orice fruit has set	
Low		Summer Dry Plants	Figs, pomegranates, pineapple Guava	Once established can tolerate 3-6 weeks between watering cycles.	

Average Water Needs

 Most vegetable crops require one inch or more of water each week during the growing season—this equals about 3/4 of a gallon of water per plant. In hot, dry conditions vegetables may demand more water.

California Gardening http://cagardenweb.ucdavis.edu

Vegetables | How do I water my vegetable garden? | Rooting depths

Comparative Rooting Depths of Common Garden Vegetables - Pam Geisel

These drawings illustrate the approximate rooting depth of different types of vegetables. The more squares, the larger the rooting depth and rooting area. These vegetables will do best with longer, less frequent and slow irrigation so that the root zone is entirely filled with water. Those plants with fewer squares typically have a much smaller root zone and will require more frequent but shallower irrigation.

These are only approximate rooting depths. Heavy soils, soils that are compacted, have hard pan, or clay layers may limit rooting depth significantly. Adjust irrigation accordingly. Use a shovel or soil probe to determine if water is penetrating deep enough after you have completed an irrigation cycle.

Illustrations with permission from UC Statewide Integrated Pest Management Program Copyright © 2009 - The Reports of the University of California. All rights reserved.

Don't learn the hard way!

Anticipate your client...the farmer!

Peter Estournes

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Effective Design Solutions for Drip Irrigation

Peter Estournes

Its Hip to Drip

- MWELO 2015
- CUWCC'S New Normal
- Drought
- Sustainability
- Graywater
- Regulations
- Invisible Water

Drip Irrigation – MWELO Definition

MEANS - any non spray low volume irrigation system utilizing emission devices with a flow rate measured in gallons per hour. Low volume irrigation systems are specifically designed to apply small amounts of water slowly at or near the root zones of plants

California Urban Water Conservation Council – New Normal For Landscapes

Why Use Drip Irrigation?

We are told...

- Drip irrigation saves water because little is lost to runoff or evaporation.
- This watering method also promotes healthy plant growth, controls weed growth, and reduces pest problems.

Advantages:

- More efficient and reduced (hopefully) water use
- Greater application uniformity
- Joint management of irrigation and Fertilization
- Limited weed growth and reduced weed germination
- Reduced pest problems
- Simplicity less mechanized parts
- Low pumping needs
- Lower operating pressure
- Useful on slopes low infiltration rate
- Adaptation
- Reduced weather related application issues (wind, evaporation)
- Ease of installation

Disadvantages:

- Biases against drip
- Drip irrigation requires maintenance and high-quality water
- Water-application pattern must match planting pattern
- Leak repair vandalism
- High initial investment
- Consistent maintenance requirement
- More difficult to visually inspect
- Plants will outgrow initial system parameters
- Operation and management may require more attention
- Restricted plant root development

Helpful Hints

- Always use filtration
- Always use pressure reducers
- Education needed by professionals no different than understanding other types of irrigation
- Must understand precipitation rates and how to measure
- Soil plant water relationships are a factor
- Water budgeting is still key to successful water management
- Emitters should not be buried but should be under mulch
- Subsurface drip irrigation better for groundcover/lawns
- Slower application rates mean longer run times
- Plant material health will be lead indicator for problems check soil

Landscape Design Considerations

MWELO 2015 Revisions:

- Pressure regulation required
- Master shut off valves required
- Flow sensors for landscapes 5000sf and above
- Components must meet national standards
- Dedicated water meters or sub-meters to be installed
 residential above 5000sf: non-residential @ 1000sf
- Minimum width for overhead irrigation 10'

Landscape Design Considerations

MWELO 2015 Revisions:

- MAWA (ETAF) calculation drops from .7 to .55 for residential and .45 for non-residential
- Drops high water using plants such as cool season turfgrass to approx. 25% coverage in residential applications (old MWELO was 33%)
- Will not be able to use any high water using plants in non-residential settings
- Irrigation efficiency is now set at .81 for drip and .75 for spray

Landscape Design Considerations

- Pressure and flow testing document on plans
- Soil testing to determine percolation rate specify emitter sizing. Include test results in bid package
- Standardize products the fewer the better include spec sheets
- Consider plant type, spacing and eventual size in selection of emission devices and where to place them
- Include Hydrozone information Estimated Total Water Use by irrigation zone
- Review local water use restrictions (water days and times)
- Trees WILL be on their own valve

Drip System Design Considerations: • Components from water meter to remote control value are

- Components from water meter to remote control valve are the same
- Allow room for filter and pressure reducer in valve box pay attention to future servicing of valves when locating inside box
- Specify valves that will work at low volumes and spot them on plan
- Specify wire mesh barrier and landscape fabric around and under valve boxes to deter burrowing animals
- Place gravel at bottom of box and label valves
- If using Anti-siphon valves be sure they meet code place drip filter and pressure reducer in valve box.
- Do not allow green colored valves boxes in plant areas

Drip Design Considerations:

Surface run drip:

- Specify industry standard ¹/₂" tubing and fittings not the tubing sold at big box stores (green stripe)
- For longer runs can use ³/₄" tubing, but may collapse in heat. Scratch in.
- Specify to stake tubing every 3-5 feet and "Scratch in"
- Specify tubing to get be close to edge of root ball of all small container plants as possible, part ways inboard for larger root balls
- Specify end caps at ends of runs and locate them on "as built"
- Specify to flush out tubing before installing emitters
- Ask to check operating pressure to quantify pressure reducer size

Drip Design Considerations:

Surface run drip:

- Emitter output selection depends on infiltration and percolation rates all should be pressure compensating
- Standardize number of emitters per size of initial container plants came in (ex. 1 per 1 gallon, 2 per 5 gallon)
- Rule of thumb locate emitters approx. ¹/₂ to ³/₄ from base of plant to edge of root ball
- If needed install emitter at end of ¼" distribution tubing using transfer barb to connect to main tubing – do not extend more than 2'
- Always leave extra fittings and emitters for client for repairs

Drip Design Considerations:

Subsurface run drip:

- More difficult than surface run
- Lay out and installation more critical than surface run
- Less prone to vandalism
- Works better for ground cover, lawns and plantings spaced equally needs 15psi operating pressure
- Please get trained by the distributor or manufacturer before attempting first install there are nuances especially with regards to slopes.
- Precipitation rates can match spray irrigation need infiltration and percolation rates
- Attempt to be part of verification of proper installation

Drip System Management

- Routine inspections especially for alt water sources

 filters
- Longer run times typically but not always
- Know soil type
- Tune valves
- Know where flushing points (end caps) are located
- Will probably need to add emitters as plants grow
- Be cautious when pruning low to the ground esp. ornamental grasses
- Keep extra parts on hand critters may cause issues
- Property owners can be a nuisance adjusting controllers, soil looks dry, etc.

How much water to apply?

- Arbutus 'Marina' 20' x 15' in full sun with 10 emitters @ 1gph each
- Formula: Weekly Eto x .4 x Tree Canopy (20' x 15')size x .62
- Calculation: 1" x .4 x (7.5x7.5 x 3.14) x .62 = gallons for week 1" x .4 x 177 x .62 = 44 gallons With 10 emitters = 4.4 gallons per emitter for week
- 2 day restrictions = 2.2 hour per day
- Use 3 start times = 40-45 minutes each

Troubleshooting

- Flush valve on drip filter left open
- Filter clogged with silt, iron, sand, pipe shards
- Emitters get clogged by mineral deposits
- "Low" operating pressure (in line emitters should be at 15psi) too many emitters
- Emitters are popping out of tubing
- Distribution tubing to long from emitter to plant
- Too much distribution tubing
- Quadra or Octa bubblers become brittle and distribution tubing pops off
- Emitters get buried by plants
- Subsurface inline emitters eventually allow roots to enter
- Subsurface installed incorrectly and "moves"

Trends

- Renewed focus on Drip Irrigation MWELO
- Public sector is confident in drip irrigation private sector not so much
- Irrigation schedules for new landscapes developed by designers to meet water budget
- Range in ETAF factors can affect MWELO calculations
- Irrigation systems not installed per plan an no as built plans
- Lack of irrigation inspections after installation

Effective Design Solutions for Drip Irrigation

Peter Estournes

Kelly Parkins

ASIC 2016 REGIONAL CONFERENCES

Southeast, Southwest, Northeast, & California

American Society of Irrigation Consultants

Turfgrass Production and Recycled Water

> Kelly Parkins City of Long Beach

Applying What We Know

- On-going drought: potable water availability will continue to be limited
- Water quality will be variable
 - Recycled, potable, well water, etc
- Plant Selection will influence success in the production of landscaped areas
- Soil production and management will play a pivotal role

Horticultural Triangle

Understanding Soils ...

AN IDEAL SOIL

Soil Texture

Soil Structure

Aggregation of Soil Particles

• Mix of air and water pore space - coherent mineral structure.

- Compacting forces
 - detrimental to the porosity
 - impacts both oxygen
 / water movement in the profile

Brady and Weil 2008

Water Movement

Air: O_2 21% CO_2 0.035%Soil Air: O_2 lower CO_2 higher

Brady and Weil 2008

Recycled Water Quality

Effect the soil and plant environment

- Water chemistry as it relates to quality
 - What components of water influence quality?
 - Distinguished from physical issues such as suspended solids and biological such as pathogens

Key Point: what your water carries to your soil, will be what your soil becomes

Partial Summary of Irrigation Water Quality Guidelines

100 C 100 C 100 C		Desired	Usual	Average	Average	
Water Parameter	Units	Range	Range ^a	Domestic ^b	Reclaimed ^b	
	Gen	eral Water Cha	racteristics			
pH	1-14	6.5-8.4	6.0-8.5	7.7	7.1	
Hardness	mg/L	<150		194 M	-	
Alkalinity	mg/L	<150		-		
HCO3	mg/L	<120	<610	174	194	
CO ₃	mg/L	<15	<3	3.0	0	
	To	otal Salinity (sol	uble salts)			
EC_w	dS/m	0.40-1.20	<3.0	0.8	1.1	
TDS	mg/L	256-832	<2000	617	729	
	Sod	ium Permeabili	ity Hazard			
SAR _w	meq/L	<6.0	<15	1.9	3.1	
adj RNa	meq/L	<6.0	<15	1.9	3.1	
RSC	meq/L	<1.25	-	-2.30	-1.88	
EC_w	dS/m	>0.41	-	÷	÷	
Specif	fic Ion Impa	<u>ct on Root Inju</u>	ry or Foilage U	Uptake Injury		
Na	mg/L	<70	-		-	
C1	mg/L	<70		<i></i>		
В	mg/L	<0.50	<2.0	0.17	0.44	

Lab Report-Irrigation Water Suitability

- 1. Salinity
 - Reduction in soil water availability in the rootzone
 - Plant unable to pull water away from salt
 - Measured by electrical conductivity
- 2. Soil permeability
 - Reduced infiltration and percolation of water
 - Sodium content relative to calcium and magnesium
 - Bicarbonate and carbonate concentrations
 - Measured by
 - $-SAR_w$ low levels of carbonate, bicarbonate
 - adj Rna accounts for carbonate, bicarbonate
 - Residual Sodium Carbonate (RSC) formation of lime

Salinity

Measuring Soluble Salts

Reproduced from Havlin, Tisdale, Beaton, and Nelson 2005

Total soluble salts are measured by Ec or TDS

Yerba mansa

Soil Colloids and Sodicity

- Colloid: clay and humus particles in the 1-2 micrometer diameter range.
- Internal and external surface area per unit mass is extensive
- Internal and external surfaces carry varying charges
- Retention of cations (CEC), anions (AEC), and water on the surfaces of colloids is a key component of soil and plant interactions

Soil Permeability

- Sodium levels are generally sufficient for plant *growth*
- Elevated levels of sodium in the water will accumulate in the soil

- Sodium acts to displace nutrients (ions) off of the soil colloid
- Excessive sodium saturation on the colloid cause the particles to disperse
- Dispersed soil negatively impacts water infiltration and aeration (gas exchange)
- Calcium and magnesium (minor) are the fix

Excessive proportion of sodium ions disperses soil

Aggregated

Flocculated and aggregated

AN IDEAL SOIL

Undisturbed Core Samples

Lab ID No.	Sample	Particle Density ¹ (g/cc)	Bulk Density (g/cc)	Ksat Infiltration Rate (in/hr)	Total Porosity %	Aeration Porosity %	Capillary Porosity ² %
24103-1a	Field #1, 0 - 3"	2.57	1.21	0.09	52.8	7.8	45.0
24103-1b	Field #1, 3 - 6"	2.61	1.62	7.1	37.9	16.5	21.4
24103-2a	Field #2, 0 – 3"	2.58	2.4	2.4	50.5	13.0	37.5
24103-2b	Field #2, 3 – 6"	2.62	1.54	19.8	41,1	24.3	16.8
24103-3a	Field #3, 0 – 3"	2.57	1.20	1.0	53.4	8.7	44.7
24103-3b	Field #3, 3 – 6"	2.62	1.59	15.5	39.2	21.0	18.2
24103-4a	Field #4, 0 – 3"	2.57	1.26	5.0	50.9	10.7	40.2
24103-4b	Field #4, 3 – 6"	2.61	1.61	19.9	38.2	16.1	22.1
24103-5a	Track, 0 – 3"	2.58	1.04	4.9	59.8	11.3	48.5
24103-5b	Track, 3 - 6"	2.65	1.59	20.3	40.0	11.9	28.1
Desired				>6	40 - 60	15 - 30	15 - 25

Well aggregated, flocculated soils

Dispersed or deflocculated

Elevated salts(EC_{se} = ~6.0) & sodium (438ppm)

Poor infiltration, crusting, low oxygen

Foot traffic further eroding soil structure

Black Layer

Potable vs Recycled Water

Constituent	Potable	Recycled	% Change
Nitrate (NO ₃)	0.65	18.90	114
Phosphate (P ₂ O ₅)	0.41	2.20	437
Potassium (K ₂ O)	12.02	45.90	282
Magnesium (Mg)	123.70	67.50	< 45 >
Calcium (Ca)	149.49	132.20	< 12 >
Sulfur (S)	181.43	332.10	83
Iron (Fe)	0.03	0.3	900
Sodium (Na)	189.15	415.80	120
Chloride (Cl)	254.05	604.80	138
Bicarbonate (HCO ₃)	318.57	683.10	114
Total Sol. Salts	1549.31	1984.50	28
EC _w	0.89	1.6	
рН	8.1	6.9	

All constituents listed in lbs / A-ft water (325,851 gallons)

Solutions

- Leaching factors
 - A new management component will have to include living with less water
- Plant Selection
- Soils management
 - Cultivation
 - Aeration
 - Amendments
 - Inorganic (gypsum, etc) and organic
 - Fertility practices
 - Ion imbalances and testing
Long Beach by the Numbers

- Over 3,000 acres of parkland and open space in city
- Irrigate 1,275 acres of parks and street medians
- 54% or 687 acres irrigated with reclaimed water
- 46% or 588 acres irrigated with potable water

Potable Parks and Street Medians Reclaimed Parks, Golf Courses and Street Medians Leaching Requirement and Reclamation Leaching How do we move the salts below the rootzone when using poor quality water?

- 1. Leaching Requirement (LR): application of enough water to maintain the current salinity, which is below the threshold for the plant
- 2. Reclamation leaching (RL): soil salinity levels are above the plant threshold and salts must be moved below the rootzone.
 - In the case of turf, yield will be effected which directly impacts playability, recuperative potential, etc

"I'LL HAVE SOME WATER MOLECULES WITH MY SALT ORDER, PLEASE"

Leaching Requirement

Recycled water on a bermuda soccer pitch: $LR = \frac{1.6}{5 (4.0) - 1.6} = 8.7\%$

Potable water use on a bermuda soccer pitch:LR =0.894.7 %5 (4.0) - 0.89=

Evapotranspiration and LR

Maintenance leaching – a couple of points to consider:

- ET or evapotranspiration water lost from the plant / soil interface due to evaporation from the soil and transpiration from the plant.
- ET determines how much water needs to be added on a weekly basis to keep the plant in good condition.

www.cimis.water.ca.gov/cimis/

Ex: bermudagrass in September is 1.08" a week.

How much additional water is that?

For a 1.5 acre bermudagrass soccer pitch that requires 1.08 inches of water to re-supply the turf:

- Need about 44,000 gallons of water per week
- Adding an additional 8.7% = ~3900 gallons / field.
- If your field has 20 irrigation heads that each put out 20 gpm, 120 minutes total per week with +8.7%.
- Without LR you would need 110 minutes per week.
- Note potable water (4.7%) would require an additional 2070 gallons to be added, or a total of 115 minutes per week.

Reclamation Leaching (RL)

Necessary when the level of salinity greatly exceeds the threshold for the plant

•
$$D_w = k \times D_s \times (EC_{eo} - EC_w)$$

 $Ec_e - Ec_w$

 D_w = depth of water to apply (ft) K = .1 (factor) D_s = .5 (depth of leaching in feet) EC_{eo} = current salinity reading (6 dSm⁻¹) EC_w = salinity of water source (1.6 dSm⁻¹) EC_{a} = final soil salinity desired (4.0 dSm⁻¹)

D_w = .092 ft of water (1.1 inches) or 44,804 gallons is needed to move the salts ½ foot deep in the profile when using using recycled water.

Reclamation Leaching vs. Leaching Req't

LR = 3900 gallons more per week using *recycled water*LR = 2070 gallons more per week using *potable water*RL = 44804 gallons more per leaching cycle with recycled
RL = 40188 gallons more per leaching cycle with potable

Both function to alleviate the additional soluble salts and sodium (calcium first) that can build up in the rootzone.

Plant Selection

Turf is highly versatile

- Tolerates regular pruning, fibrous root system lends itself to durability, large capacity to absorb carbon, and vegetative cover provides for efficient cooling of the environment
- Functional Quality includes resiliency, yield, rooting, and recuperative potential
- Visual Quality includes density, uniformity, smoothness

Dr. Roch Gaussoin, University of Nebraska

Turfgrass Salinity Tolerance

Common Name	General Tolerance	Threshold Tolerance	Grass Type
Alkaligrass	VT-T	8.5	Cool
Saltgrass	т	8.0	Warm
Kikuyu	Т	8.0	Warm
Fairway wheatgrass	Т	8.0	Cool
St. Augustinegrass	Т	6.5	Warm
Tall fescue	Т	6.5	Cool
Perennial ryegrass	Т	6.5	Cool
Slender creeping red	Т	6.3	Cool

Carrow and Duncan 2012

Common Name	General Tolerance	Threshold Tolerance	Grass Type
Buffalograss	MT	5.3	Warm
Blue grama	MT	5.2	Warm
Hard fescue	MT	4.5	Cool
Common Bermudagrass	MT	4.3	Warm
Hybrid Bermudagrass spp.	MT	3.7	Warm
Creeping bentgrass	MT	3.7	Cool
Kentucky bluegrass	MS	3.0	Cool
Zoysiagrass	MS	2.4	Warm

Field Scout Direct Soil EC Meter

Field Scout TDR 300 Soil Moisture Meter https://www.youtube.com/watch?v=UYgl6xPxVJk

Trimble GPS

Soil Management

- Mechanical cultivation
 - Core aeration, vertical slicing, drill and fill
- Amendments
 - Chemical cultivation
- Nutrition
 - Imbalances caused by nutrient loading in the soil can be difficult to change
- Soil / Water test frequency
 - Determine variability in water source
 - Evaluate the effectiveness of the program
 - Soil: pH, Melich III, and saturated paste extract for salts

Drill and Fill Variability in spacing of holes will influence up to 30% volumetric change of soil profile

Key Point Summary

- Soil physical properties provide porosity for plant management
- Recycled water is higher in sodium, and in general salts
- Sodium is especially problematic due to destabilization of the aggregate and related porosity destruction

Key Points - Solutions

• Solutions include:

- Leaching requirements (LR) and reclamation leaching (RL) are tools to move water and ions through the profile using salty water.
- Plants have salt tolerance ratings
 - Turf tends to be highly desirable from this standpoint

Soil management

- Mechanical cultivation
- Calcium has to be a solution if sodium levels are elevated
- Nutritional balance
 - Soil and water testing

Questions

Kelly Parkins kelly.parkins@longbeach.gov

References

- Ayers, R.S., and D.W. Westcot. 1994. *Water quality for agriculture* (FAO Irrigation and Drainage Paper, 29, Rev. 1). Rome: United Nations Food and Agricultural Organization.
- Carrow, R.N., and R.R. Duncan. 2012. Saline and Sodic Turfgrass Soils. CRC Press, Baca Raton, FL.
- Brady, N.C. and Ray R. Weil. 2008. The Nature and Properties of Soils. Pearson Prentice Hall.
- Tanji, K. et al. Salt Management Guide for Landscape Irrigation with Recycled Water in Coastal Southern California. A Comprehensive Review.
- Horneck, D.A. et al. 2007. Managing Salt Affected Soils for Crop Production. Pacific NW publication.
- Stowell, L.J., and W. Gelernter. 2001. Negotiating reclaimed water contracts: Agronomic considerations. *Pace Insights* 7 (3): 1-4. San Diego, CA: PACE Consulting.