

Discussing the Value of Sustainability in the Irrigation Industry

Bryce Carnehl – Corporate Social Responsibility Manager, Hunter Industries **Warren Gorowitz** – Vice President of Sustainability, Ewing Irrigation & Landscape Supply

Sustainability... Being Green

2019 NATIONAL CONFERENCE

We're part of the "Original" Green Industry!

2019 NATIONAL CONFERENCE

Irrigation is a necessity to sustain most green spaces in the urban environment

2019 NATIONAL CONFERENCE

But, most of the time nobody actually gets to see our work...

2019 NATIONAL CONFERENCE

Shift from Landscape Aesthetics to Performance

LANDSCAPE PERFORMANCE SERIES	Case Study Briefs Fast Fact Library Benefits Toolkit Collections	More ~	Q	
help designers,	e Performance Series is the agencies, and advocates ev nake the case for sustainab	valuate performance, show		EVALUATING
	Active Living >	Revitaliza	tion >	LANDSCAPE
	Resilience >	Social Equ	ity >	PERFORMANCE

A Guidebook for Metrics and Methods Selection 2018

LANDSCAPE ARCHITECTURE FOUNDATION

Carbon & Climate >

lealth & Wellbeing

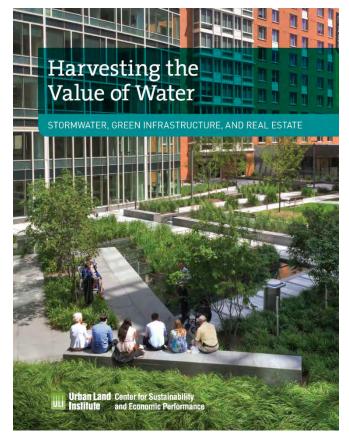
Urban Agriculture >

∆ ASIC

Uptown Normal Circle

Eco-System Services provided by Green Infrastructure

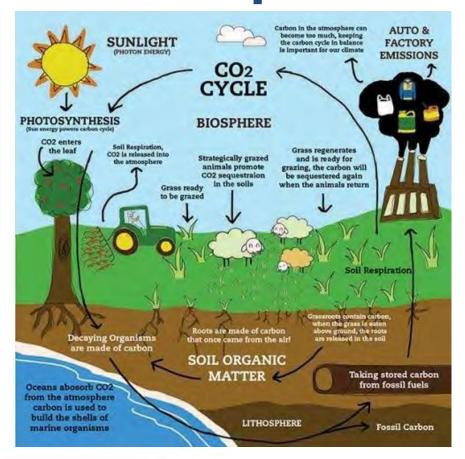
05.02.17


These Cities Are Replacing The Worst Kind Of Infrastructure With The Best

R.I.P. parking lots.

3/7 [Image: courtesy SWA]

∆ ASIC

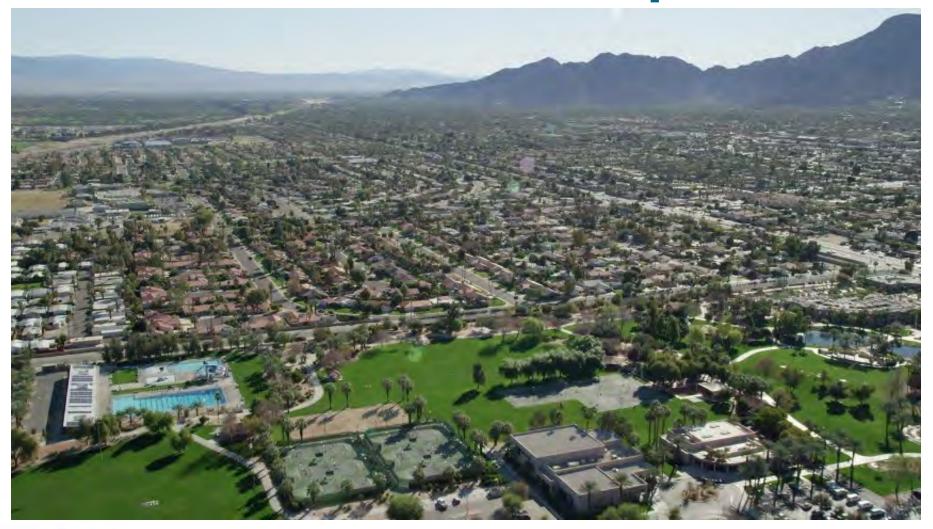

Economic Value and Benefits of Irrigated Green Spaces

▲ ASIC

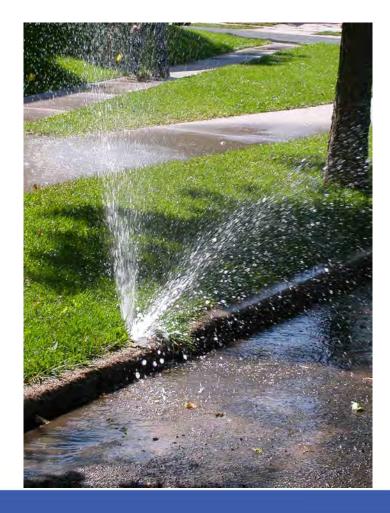
Environmental Benefits of Irrigated Green Spaces

▲ ASIC

The Social Benefit of Green Spaces


▲ ASIC

Health and Well-Being Value of Irrigated Green Spaces


ASIC 20

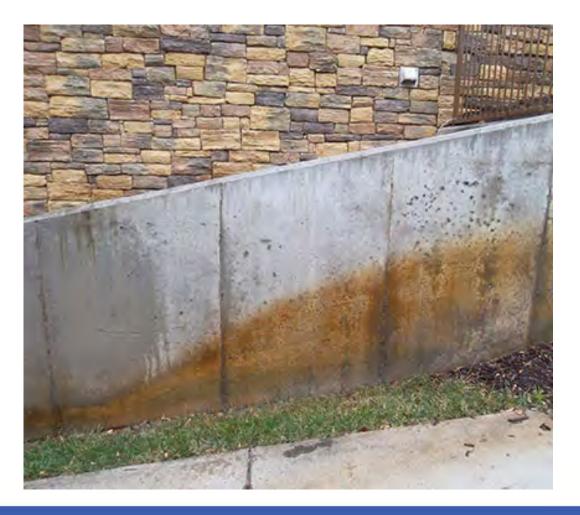
ASIC 2019 NATIONAL CONFERENCE

Polarized View of Green Spaces Irrigation often takes the blame...

▲ ASIC

Irrigation often takes the blame...

▲ ASIC


Polarized View of Green Spaces Context plays a role as well...

2019 NATIONAL CONFERENCE

As does landscape planning...

▲ ASIC

Polarized View of Green Spaces The reactions we have in times of crisis...

2019 NATIONAL CONFERENCE

... May cause more harm than good

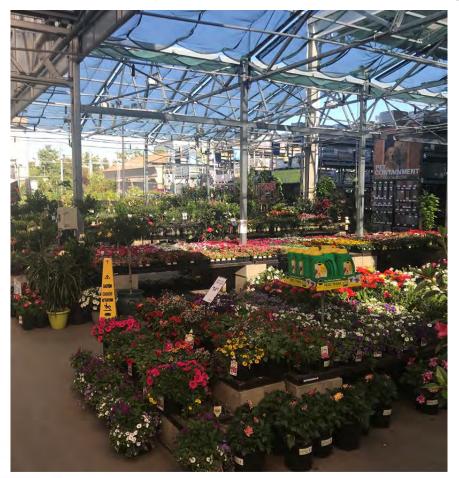
Save Our Water and Our Trees!

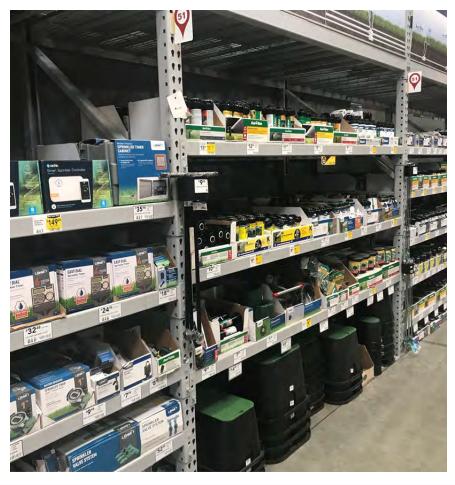
saveourwater.com/trees

HELP YOUR TREES SURVIVE THE DROUGHT

BE WATER-WISE. Trees and water are both precious resources. Trees make our houses feel like IT'S EASY. **HERE'S HOW**

YOUNG TREES MATURE TREES **EXPOSED TREES DECIDUOUS TREES** The critical time for wate The roots of younger trees Mature trees require MORE Water loss is greater where water when growing near heat are less established & need trees are exposed to hot is during later winter/early easier access to water to traps such as driveways & afternoon sun & strong or spring when new buds establish deep root systems foundations constant wind and leaves are forming THE RIGHT AMOUNT IN THE RIGHT PLACE CONSERVE & THE RIGHT TIME DON'T WASTE WATE **RECYCLE WATER** Water the "drip zone." Water early in the Water should soak into Water young trees area directly beneath morning or after the the ground rather than twice per week (about Inside: Place buckets the foliage & shaded sun has set, as this is running off into the 5 gallons) & mature in the shower to by the tree. Also, add trees once per week collect warm up water. when trees replace drain

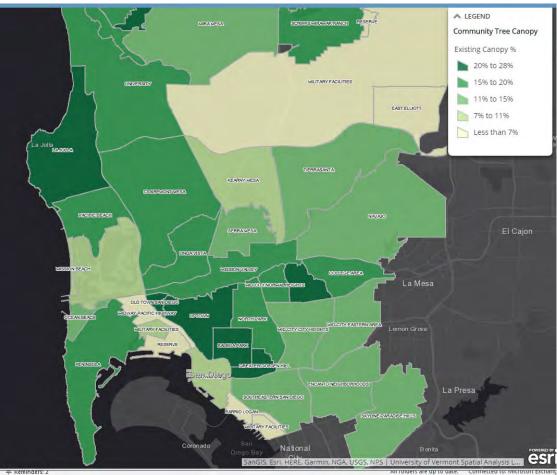

▲ ASIC


Polarized View of Green Spaces ...May cause more harm than good

▲ ASIC

How does anyone make the right choice?

▲ ASIC


More and more, the value of green spaces in being recognized

Trees

Trees are integral to meeting San Diego's commitment to climate change, carbon sequestration, storm water runoff reduction, and water conservation. As part of our <u>urban</u> <u>forest</u>, trees are found on both public and private property and help make our communities more sustainable and livable.

∆ ASIC

More and more, the value of green spaces in being recognized

austintexas*gov

CLIMATE CHANGE

Grow Zones

The City of Austin Parks and Recreation (PARD) and Watershed Protection (WPD) departments are working together to improve riparian zones in nineteen city parks.

Mowed

First Year Growth

5 to 10 Years

What is a riparian zone?

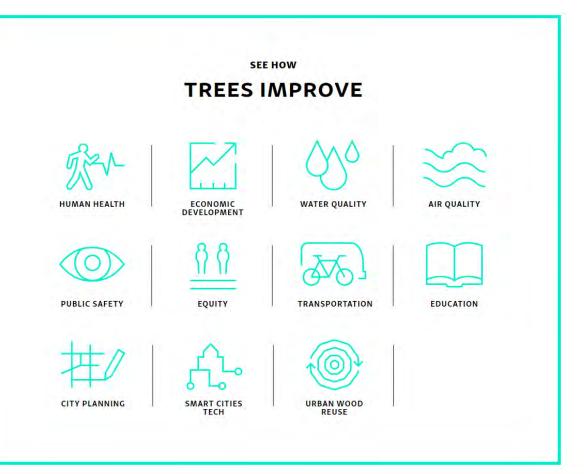
The riparian zone is the transition area between the aquatic environment in the creek channel and the terrestrial environment outside the channel.

Benefits of riparian zones:

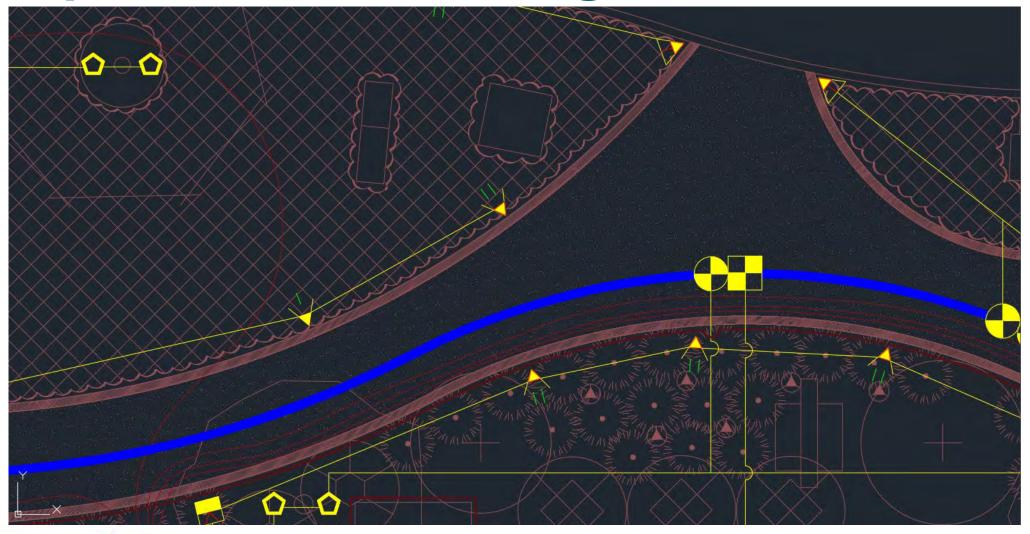
- Filter storm runoff, removing pollutants before they reach the creek
- Prevent stream bank erosion
- Slow flow, reducing downstream flooding
- Provide a "sponge" that will absorb water
- Provide shade that cools air and water temperatures
- Provide habitat and food for a diverse group of animals
- Reduce the City's carbon footprint via both sequestration and reduced emissions.
- Reduce moving and maintenance by City staff.
- Creates a greenbelt forest and stream amenity with diverse tree and plant communities for outdoor enthusiasts.

▲ ASIC

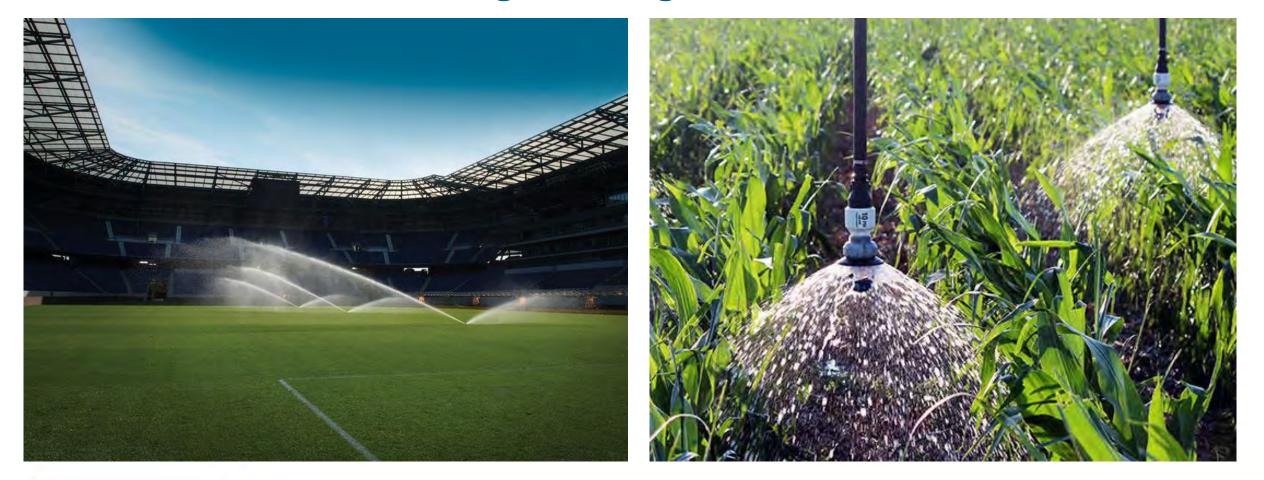
More and more, the value of green spaces in being recognized



Urban Wood Reuse


TREES IMPROVE

▲ ASIC


 With more trees removed from urban areas than National Forests, urban wood reuse industrial clusters have emerged that include powering cities, art sculptures and nanotechnologies. They create jobs, protect natural forests and reduce environmental impact.

Responsibilities of Irrigation Consultants

2019 NATIONAL CONFERENCE

∆ ASIC

	Sun	Mon	ot watering due to k temperature	Wed	Thu	
EATHER	Sun	Mon	Time: Tue, 7:00pm	a d	inu	
Weather Forecast	7p Front Lawn Zone	Bp Front Giardon Zon	Pp Tandenije na m		7p Front Lawn Zone	
Weather Station Temperatures	7:06p Side Lawn Zor 7:06p Front Gaiden J	Re-Mogana-Zone 0	8p Front Gardon Zon		7:06p Front Garden i 7:12p Side Lawn Zor	
Weather Station Rainfall	7:22p smart 🤤	8p-Shepp 0	Rp Mugans-Zone 🚯		7:28p Back Lawn Zo	
Weather Station Wind Gust	8:12p smart 2 9	8p-Test ()	8p-Shepp O 8p-Test ()		7/24) 6 (Dessa 8:09p smart 0	
Evapolranspiration (ET)	8138p Megans Zone 8138p Shopp ()				9:09p smart 2 0 9:35p Test 0	
ATER USAGE	8:38p-Test O				9:45p Shepp 0	
Water Saving	8	9	10	11	9:56p Megans Zone 12	
Flow Meter Measurements	n Gaden Book Seit	0	2a Front Lawn Zone	2a Front Gartien Zon	12	
Total Water Usage	2e Front Gerdon Zon		2:06a Front Garden 2 2:17a Side Lawn Zon	2111a Conten Bools 2 3-01a Shenn O		
Flow Rates (per minute)	2a Megana Zone 0		2:33a Back Lawn Zor	3:21a Megans Zone		
Sensor Lévéls	2a-Shepp O 2a-Test O		2:49 Gauten Gers 1 3:39a smart 0			
Smart Water Balance			4:29a smart 2 0 4:55a Test 0			
AGNOSTICS			5:15a Shepp 0 5:35a Megans Zone			
Solenoid Load	15	16	17	18	19	-
ISTORICAL WEATHER	2x Front Garden Zon Tottla Garden Bods 2	1a Front Garden Zon	2a Front Garden Zon 2-11a O artist 5 2	In General Sensitive 2a Front Garden Zon		18
Monthly Evapotranspiration	3:01a Shepp 0	2:01a Shepp O	3:01a Test 🕚	2-110 (210
Monthly Temperature & Rainfall	3:21a Megans Zone	2:21a Megans Zone	3:21a Shepp O 3:41a Megans Zone	3:01a Shepp 0 3:21a Megans Zone		
	22	23	24	25	26	

▲ ASIC

▲ ASIC

∆ ASIC

Responsibility of Irrigation Consultants

WHEN YOU RECYCLE YOU CREATE JOBS FOR PEOPLE WITH DISABILITIES

HUNTER HAS TEAMED UP WITH EWING AND BLUE STAR RECYCLERS TO RECYCLE OLD IRRIGATION CONTROLLERS. Blue Star Recyclers' mission is to recycle electronics ethically to help create jobs for people with autism and other disabilities.

Bring an old irrigation controller to any Ewing Irrigation store and drop it off in the designated container.

2019 NATIONAL CONFERENCE

Responsibility of Irrigation Consultants Innovate Water Supply Sourcing

2019 NATIONAL CONFERENCE

▲ ASIC

Responsibility of Irrigation Consultants Share your stories

∆ ASIC

Responsibility of Irrigation Consultants Share your stories

▲ ASIC

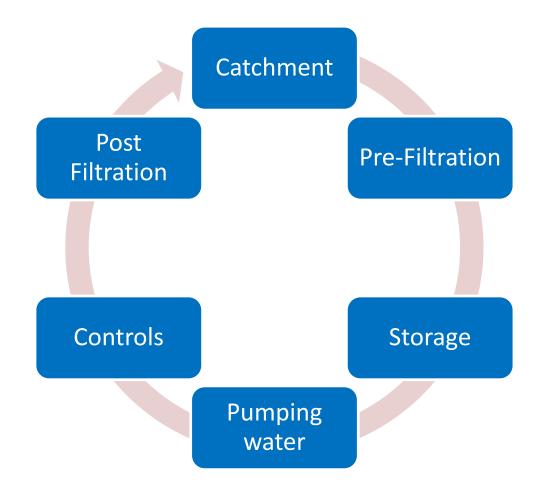
Responsibility of Irrigation Consultants

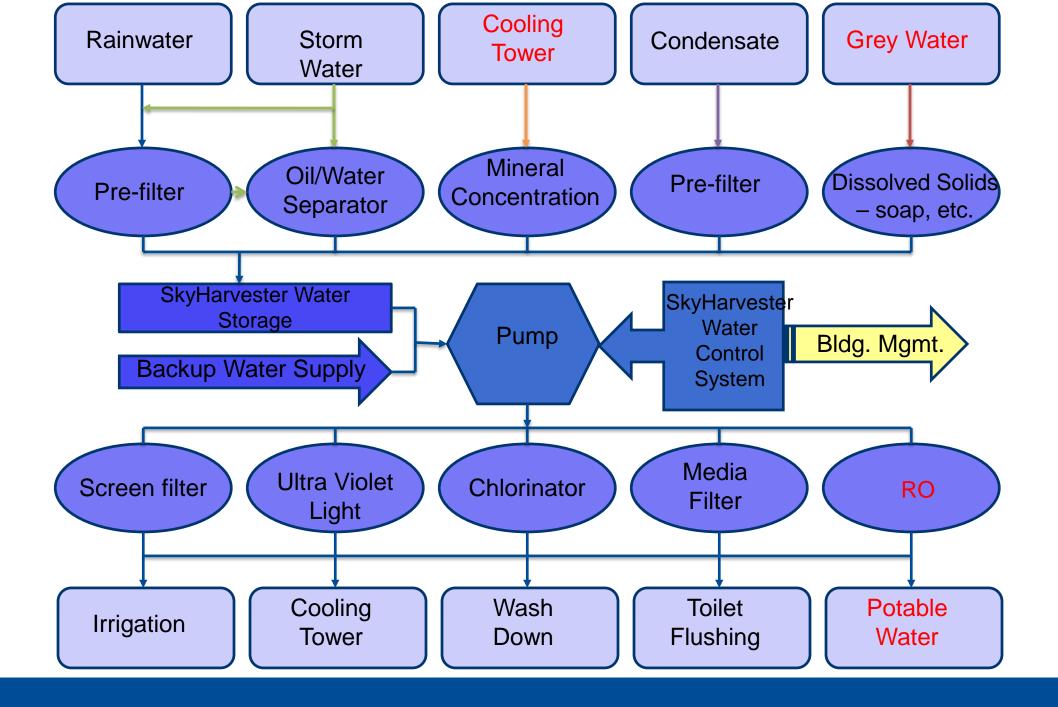
2019 NATIONAL CONFERENCE

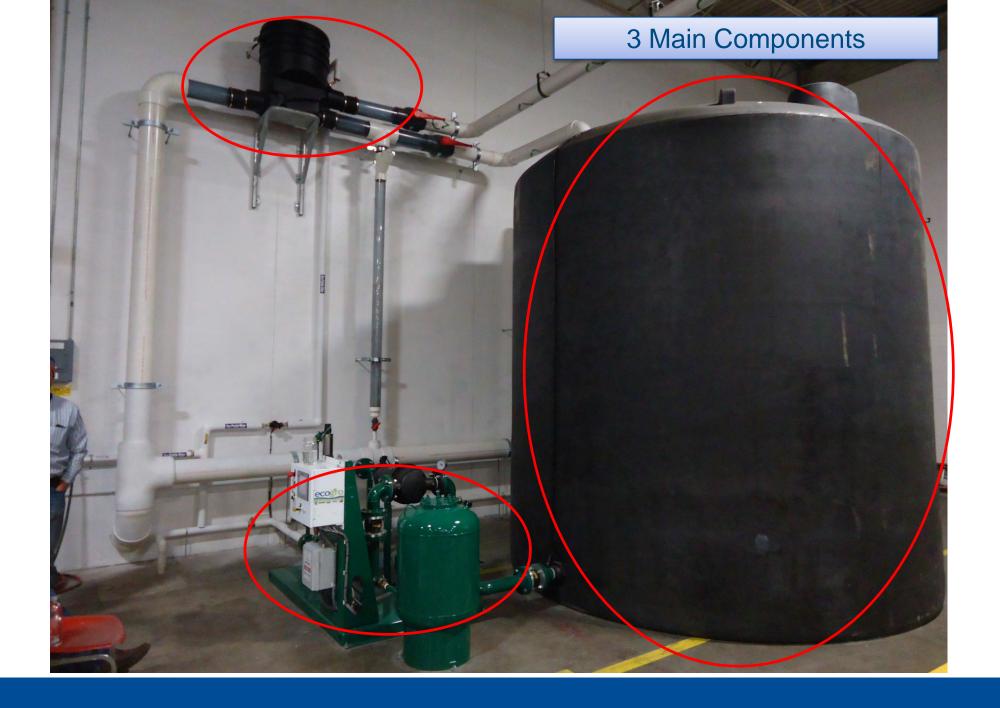
 <u>https://www.axiomimages.com/aerial-stock-footage/view/AX0013_071</u> <u>http://www.sprinklergenie.net/services/sprinkler-repair/</u> <u>http://www.azsprinkler.com/blog/97/</u> 	https://smithceeds.wordpress.com/2011/11/04/notes-from-the-field-station-greywater- irrigation/ https://asic.org/about-us/national-and-regional-conferences/ https://cbssanfran.files.wordpress.com/2016/11/polar_bear_arctic_498047476.jpg?w=1024
 <u>https://www.neponset.org/happenings/time-to-get-serious-about-irrigation/</u> 	<u>&h=576&crop=1</u>
<u>https://slideplayer.com/slide/2478439/</u> •	https://www.livescience.com/16154-green-time-adhd-symptoms.html
<u>http://www.golftripper.com/course-profiles/desert-highlands-golf-club/</u> •	https://www.hirerush.com/blog/how-to-start-a-vegetable-garden/
 https://www.diychatroom.com/f16/raised-planter-bed-against-side-house-82392/ 	
 <u>https://www.blueridgeexteriorcleaning.com/projects/irrigation-stain-removal-</u> <u>charlottesville-va.php</u> 	
 <u>https://www.sacbee.com/news/state/california/water-and-</u> <u>drought/article17268866.html</u> 	
 <u>https://www.lgc.org/resources/community-design/lpu/jun2015/</u> 	
 <u>https://www.watersmartsd.org/sites/default/files/treewateringdrought_2p_ifgu-sdrufc_15jul15.pdf</u> 	
 <u>https://sandiego.maps.arcgis.com/apps/MapSeries/index.html?appid=22676b84005</u> <u>b4365aa44af1b217d4201</u> 	
 <u>https://www.vibrantcitieslab.com/</u> 	
 <u>https://www.adcon.com/solutions/irrigation-monitoring-107/</u> 	
<u>https://www.completeirrigation.ca/</u>	
 <u>https://www.buildinggreen.com/feature/alternative-water-sources-supply-side-solutions-green-buildings</u> 	

2019 NATIONAL CONFERENCE

Liquid Expectations – A Guide to Harvested Water Quality


Mike Warren Product Manager Watertronics mike.warren@watertronics.com Rick Clelan Regional Manager Ewing Irrigation rick.clelan@ewingirrigation.com


LEARNING OBJECTIVES


- Components of Rainwater Systems
- Tank Pre-filtration and sizing
- Common types of disinfection systems available
- Filtration integration into rainwater systems and for which water treatment purpose
- How to operate and size UV disinfection systems
- How a chlorine disinfection system works, and what to avoid in irrigation use
- What site circumstances will negatively affect water quality
- Common installation pitfalls

WATER HARVESTING Major Components

COMPONENTS – Pre-filter

- The best way to filter the water is at the source. The sooner we incorporate filtration, the better the rest of the system operates.
- Primarily particle filtration (TSS total suspended solids)
- Oil/Water separation (Stormwater only Hydro-Dynamic Separator)

Image courtesy of Graf

DESIGN OF COMPONENTS - Pre-filtration

- All Gravity type rainwater filters work on an efficiency principle
 - 200gpm @ 90% eff. = 180gpm to storage tank
- Sizes from 32 GPM to about 4,000gpm
- Some can be flushed with pressurized water
- Approx. 350 micron screens (.013")
- Exception: Hydro-Dynamic separators 80% /100 micron

Image courtesy of Graf

DESIGN OF COMPONENTS - Pre-filtration

Image courtesy of Ridgewater Eng

Why Pre-Filtration?

Image courtesy of ITS Jim D.

Tank Pre-filtration

Commercial Installation Examples

Images courtesy of Watertronics

COMPONENTS - Storage

- Storage could be any vessel that can hold or retain water
- Tanks or Ponds
- Separate containment, or built into building foundation
- Below or Above ground

Image courtesy of Watertronics

Image courtesy of Norwesco

Image courtesy of Watertronics

Storage & Water Quality

Below ground tanks - limit sunlight, steady temperature Above ground tanks – should be opaque (limit algae growth) Water movement – recirculation systems

Keep organic items from decomposing in tanks (pre-filters)

Image courtesy of Watertronics

Image courtesy of Watertronics

COMPONENTS - Pumping/Controls

- The heart of the water harvesting system
- Submersible or above grade pumps
- Controls all peripheral components (level, flow, pressure, filters, treatment)
- Make a water manager out of the end user
- Quantify ROI and contain data about system

mages courtesy of Watertronics

TYPES OF PUMPS

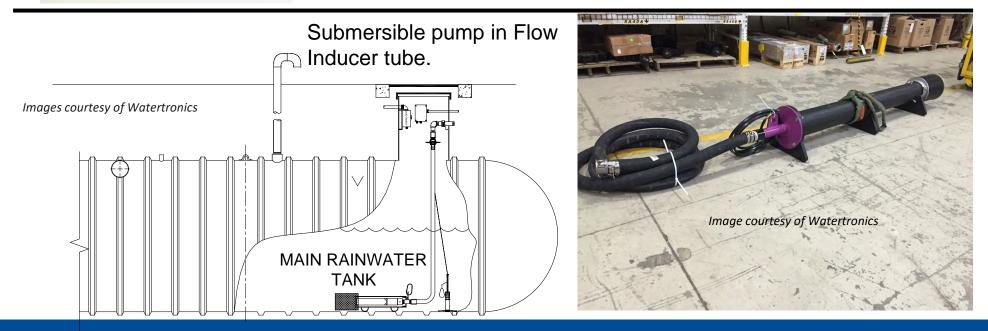

Horizontal Centrifugal

Image courtesy of Goulds

Water well submersible installed Vertically or Horizontal

Image courtesy of Goulds

turbine,

COMPONENTS - Controls

Images courtesy of Watertronics

Automatic and Self protecting

Water Quality Specific Alarms (in addition to normal hydraulic pump station alarms)

DISCHARGE FILTRATION

- Automatic Screen Filtration
- -Reverses flow across the screen
- -Internal self cleaning mechanism
- -Note min. filter operating pressure and the extra
- demand it creates on the pump station
- -Note screen area when sizing (water quality, UV, GPM/area)

UV Pre-Treatment = 5-25 micron Drip Irrigation = 100 micron Spray Irrigation = 200-500 micron

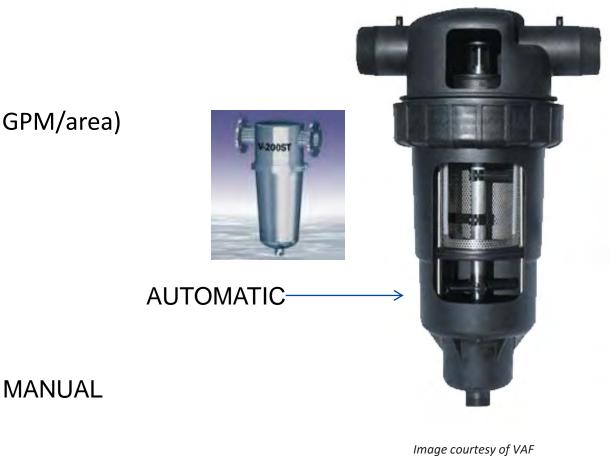
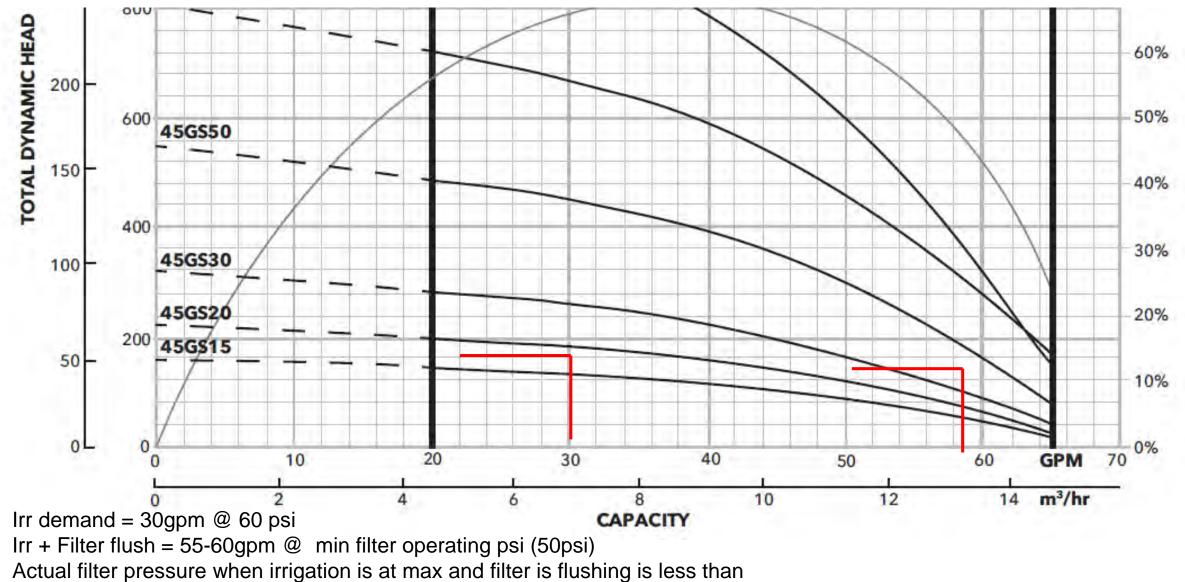
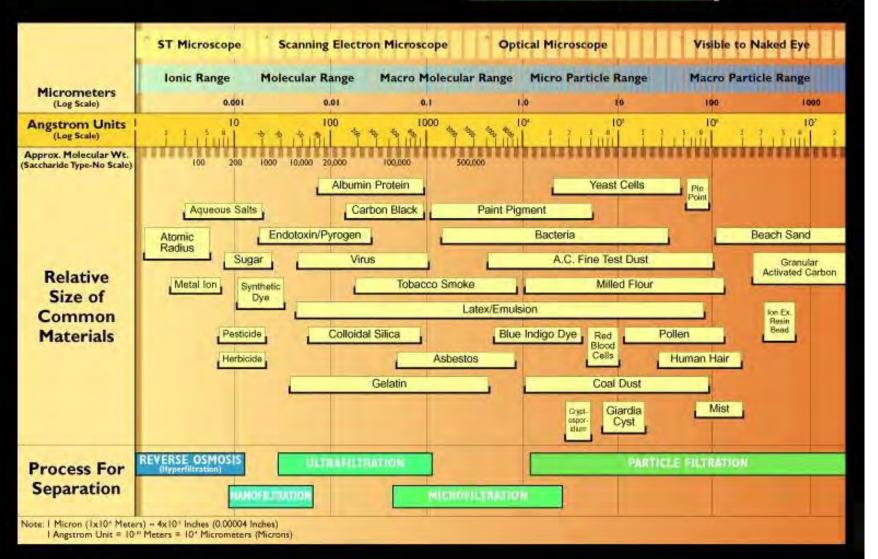



Image courtesy of Rainharvest


DISCHARGE FILTRATION

filter operating pressure required to clean the screen.

DISCHARGE FILTRATION

The Filtration Spectrum

Ultra Violet Disinfection Basics

-254nm wave length UV light is used to render organisms inactive or unable to reproduce

-Water is in contact with light for a period of time. Energy is transmitted to the water (mj/cm2)

-Pick a dose (30mj/cm2) organisms require a certain amount of energy to be deactivated

-Pick a flow rate with a given UVT% (actual UVT of water not known without water sample.)

Water Quality Requirements for UV

Dose: Light Energy delivered into the water "mj/cm2" (see also destruction chart)

Ultra-Violet Transmittance %: Light's Ability to Penetrate the Water

Flow Rate: Maximum GPM able to be disinfect at criteria above.

General Requirements

- 7grains or less of Hardness (rainwater is soft water)
- .3ppm of iron (limits quartz sleeve fouling)
- UVT% must be per the mfg. performance curve
- Must manage heat build up

If the UVT% of the water through the UV unit is different than what you sized the UV for, the dose is NOT DELIVERED!

Images courtesy of Watertronics

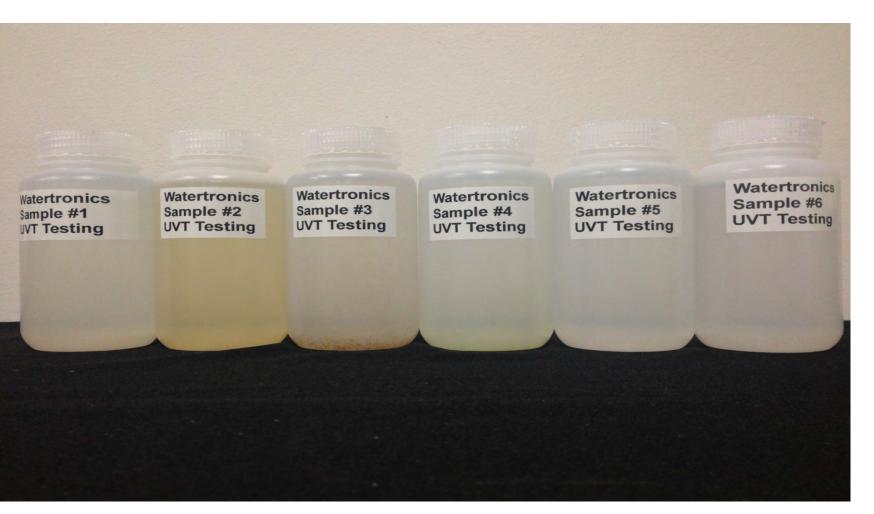
Water Quality Requirements for UV

What surface the water is collected from has a drastic affect on water quality

The surface of collection is the main driver in whether or not UV can be used on a given job site.

Avoid Green Roofs or other roofs with organic material

TDS vs. TSS !! TDS can not be filtered out with screen filtration. Its dissolved.



Images courtesy of Watertronics

Ultra Violet Light Disinfection

#1 MKE canal
#2 Green Roof (AFTER 5 MICRON)
#3 Parking lot
#4 Metal Roof
#5 EPDM Roof Black
#6 EPDM Roof white

Ultra Violet Light Disinfection

	TEST RE	SULTS	
Bottle Label:	Watertronics Sample #1 UVT Testing	Bottle Label:	Watertronics Sample #4 UVT Testing
UVT (1cm, 254nm):	78%	UVT (1cm, 254nm):	96%
Bottle Label:	Watertronics Sample #2 UVT Testing	Bottle Label:	Watertronics Sample #5 UVT Testing
UVT (1cm, 254nm):	8%	UVT (1cm, 254nm):	97%
Bottle Label:	Watertronics Sample #3 UVT Testing	Bottle Label:	Watertronics Sample #6 UVT Testing
UVT (1cm, 254nm):	89%	UVT (1cm, 254nm):	90%

Image courtesy of Watertronics

#1 MKE canal #2 Green Roof #3 Parking lot

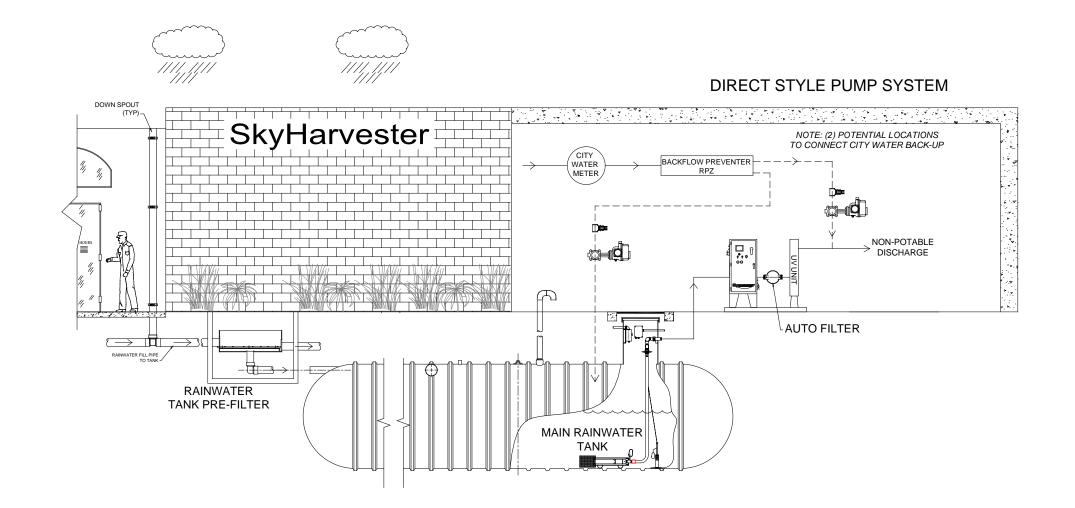
#4 Metal Roof #5 EPDM Roof Black #6 EPDM Roof white

Chlorine Injection Disinfection/Color

<u>Chlorine Recirculation System on Day Tank</u> (maintains 2-3ppm residual chlorine level)

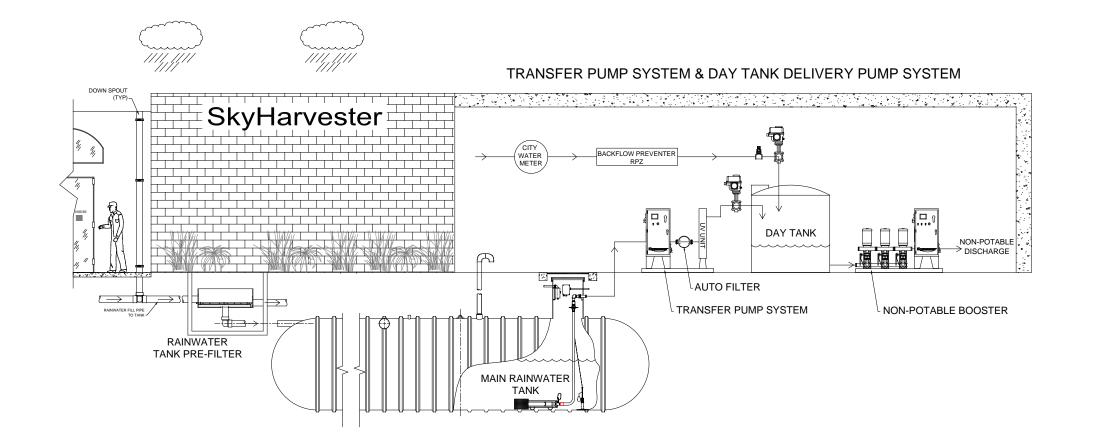
-Uses separate pump in Day Tank Start/Stop via timer
-Water sent through CHL Analyzer (PH & CHL sensor)
-Dosing pump injects to maintain set point of CHL in PPM
-30gal holding tank (uses household bleach/pool shock)

- Chlorine will also effect color of water. It changes the way molecules reflect visible light to the naked eye.
- Like a stain removal on white T-Shirt.


Direct Style System

The water in the main storage tank is pumped directly to the given application at the desired pressure. All components on the discharge side of the pump(s) are sized for max flow rate (capacity) and psi.

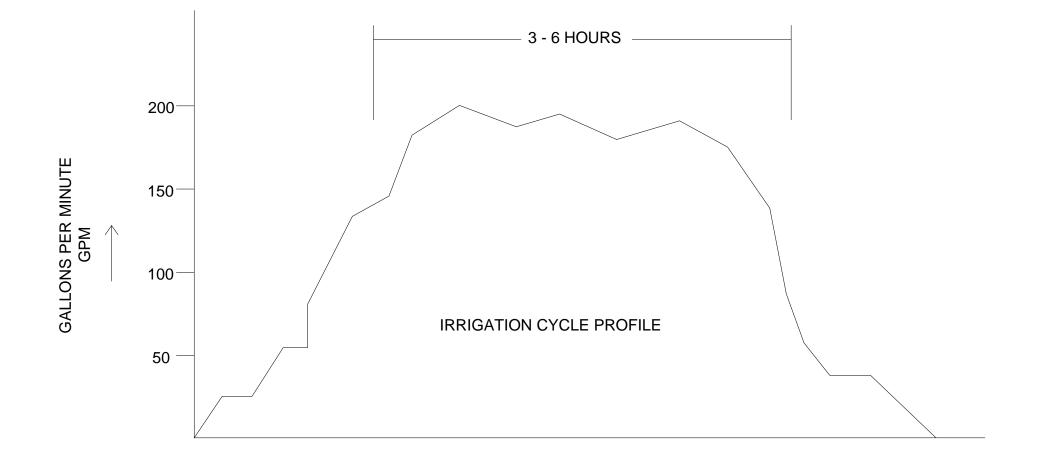
Day Tank Style System

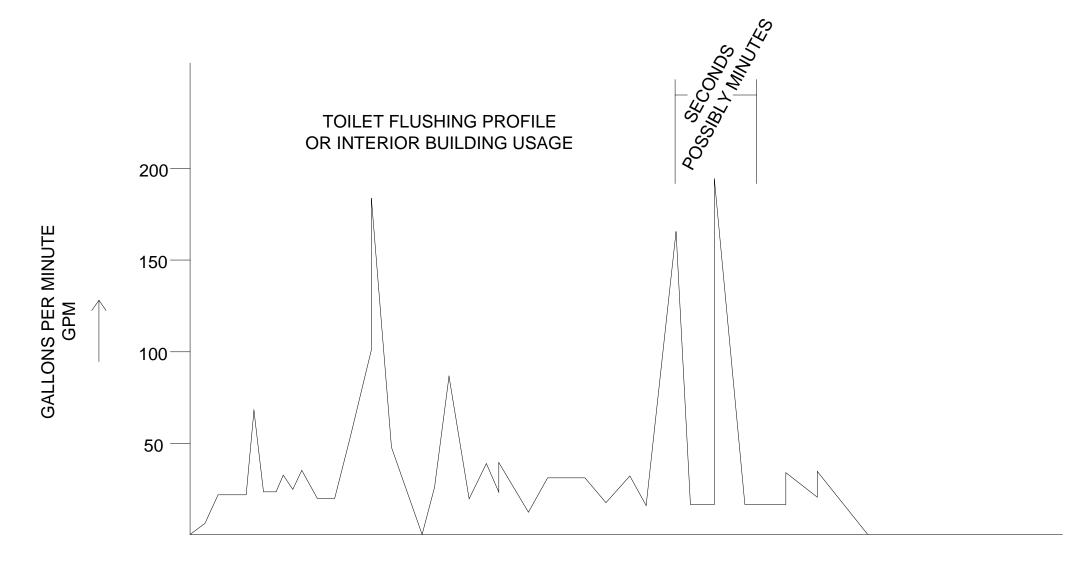

Complete rainwater system includes (2) storage tanks and (2) pump stations. Also known as "batch processing" where a smaller transfer pump is used to treat water from main rainwater storage tank at a lower flow rate to the "day tank", while another pump station to deliver that water at required flow and psi for the application.

DIRECT STYLE SYSTEM

TRANSFER & DAY TANK SYSTEM

Deciding Factors to use Direct or Day Tank Style Systems


1. Pressure required for application (150 psi max rating / 125psi safety factor)


1. Filters and UV units have rating restrictions

- 2. FLOW or GPM required to application: For Financial Savings \$\$
 - 1. IF the application requires 80GPM, a day tank system that transfer water at 30gpm offers little or no cost savings
- 3. Footprint or Available Space

1. A direct system may be chosen even though GPM (over 150gpm) is high due to space constraints

4. Application or Usage Profile (ie.. Irrigation vs. Toilet Flushing)

TIME

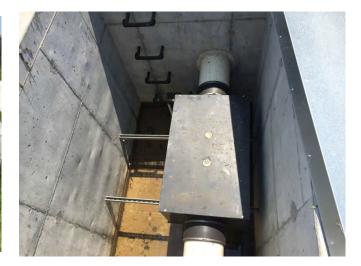
CITY OF OCEAN SPRINGS - Splash Pad

- 3k Below ground storage tank
- Submersible pump in tank
- Control skid with filtration (outdoors)
- Back up water will fill tank
- Fully flooded excavation installation
- Harvested splash pad water for irrigation

Images courtesy of Watertronics

RADIO FLYER Irrigation

- 40k above ground storage tank
- Flooded suction pump w/ 100 micron filter
- Back up water will fill tank
- Cold weather environment



Mitchell Park Domes Irrigation / Indoor

- 80k storage tanks
- Submersible pump 80gpm
- Filtration and UV
- City water back up direct
- Year round operation

Images courtesy of Watertronics

Thank you

Questions ?

Making Sense of Flow Meters A Measured Discussion of Types and Technologies

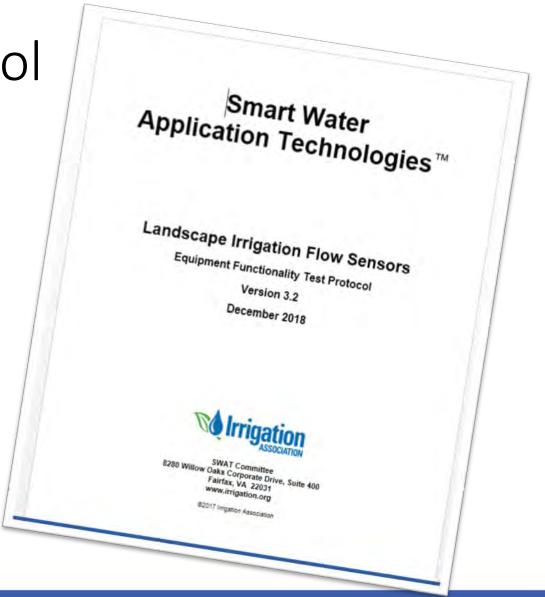
Moderated by: Brent Mecham

Panelists: Norm Bartlett, Ronald Purdy, Jim Peterson

Agenda

A ASIC

- Discussion about SWAT testing protocol Brent
- Historical perspective of flow management in irrigation Norm
- Types of technology available for flow management Ron
- Future of flow management Jim
- Q & A audience questions will be considered
- Note: This is not about product promotion, but rather understanding how to better use the technology.


2019 NATIONAL CONFERENCE

SWAT Draft Testing Protocol

- Scope: standardized performance evaluation of flow sensors used in landscape irrigation up to 4-inch size.
- Accuracy of flow signal
- Repeatability of flow signal
- Range of flow
- Pressure loss through the sensor
- Pressure rating
- Durability

∆ ASIC

• Wet environment test

2019 NATIONAL CONFERENCE

Terms:

• 4.1 Flow sensor

A term commonly used in the irrigation industry referring to a device that detects flow and that generates a signal that is compatible with a controller or receiving device.

• 4.2 Flow meter

Combination of a flow sensor and scaling device often integrated into a single device which displays and or transmits actual flow rates or volumes in standard units of measure.

Flow Rate Test

∆ ASIC

Sensor SN		Sensor size		
Test flow rate	Reference Meter Flow Rate gpm	Sensor Flow Rate gpm	Inlet Pressure psi	Delta Pressure change psi
Maximum flow rate				
80% of maximum				
60% of maximum				
40% of maximum				
20% of maximum				
Minimum flow rate				

Durability Tests

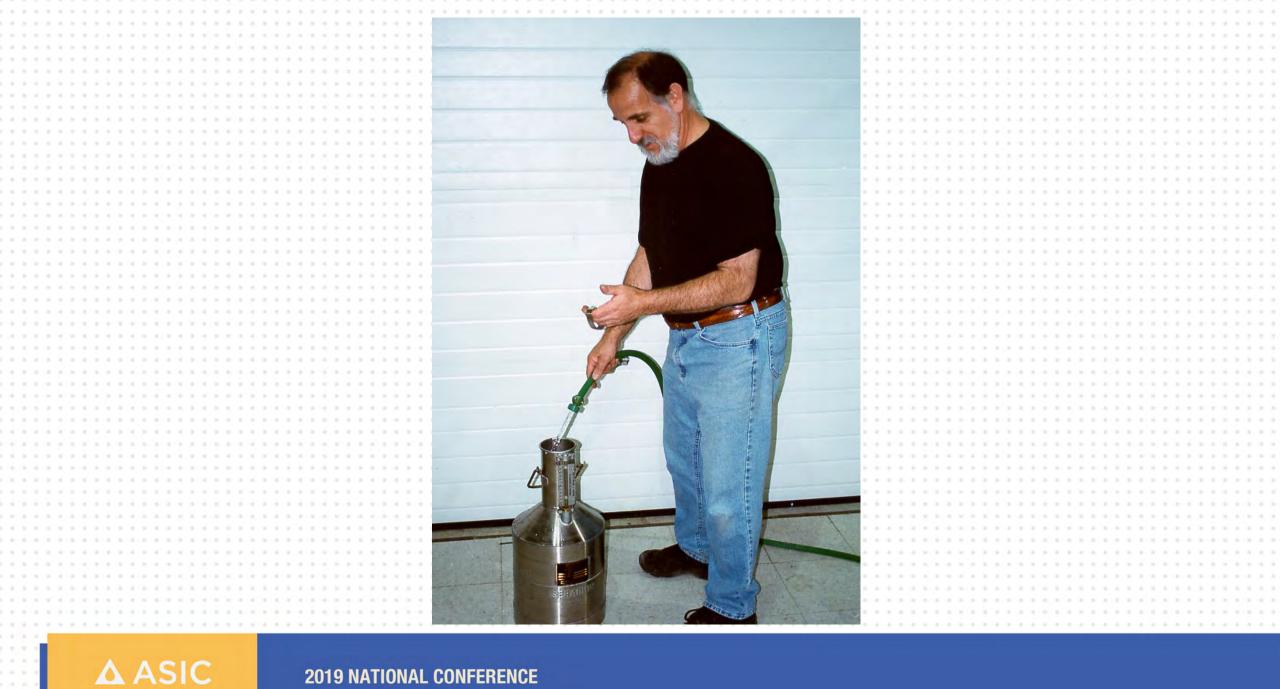
∆ASIC

	PRESSURE psi	WATER TEMP °F	FLOW RATE unit per minute	OPERATING PERIOD
Continuous test	70	72	Q (80% of maximum)	10 hours
Cyclic test (on 30 sec. off 30 sec.)	70	72	Q (80% of maximum)	2,500 cycles

Why Testing?

A ASIC

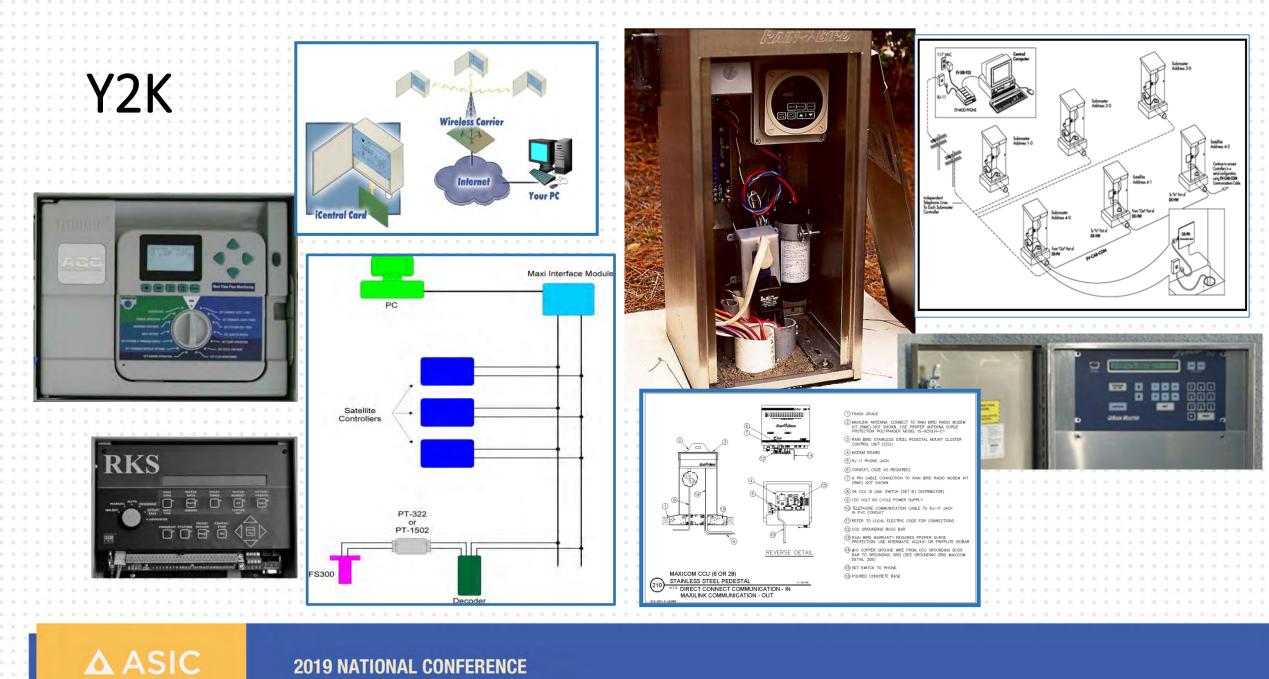
- Flow sensing is being written into codes and regulations.
- Industry being proactive to validate the performance characteristics.
- Establish expectations of regulators.
- Should flow sensing be used to measure actual water usage?
- Improve consumer confidence.

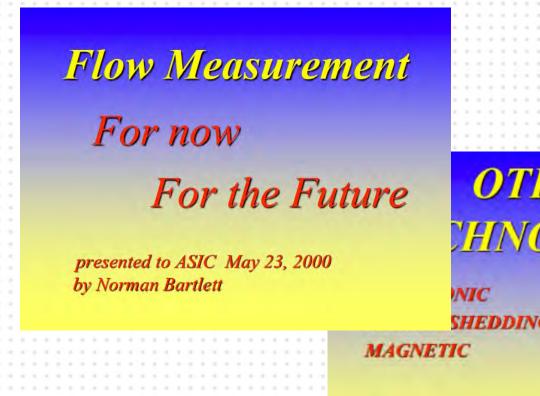


Norm Bartlett Creative Sensor Technology

Beginnings.....

▲ ASIC


1986

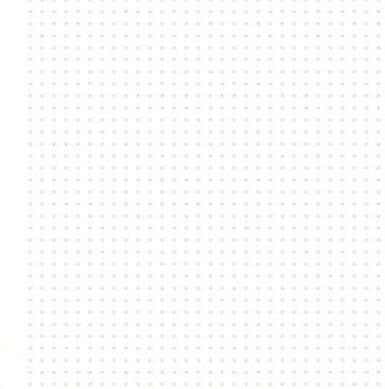

∆ASIC

Change

Irrigation Controllers accept flow input directly from sensors
Central Control Systems expand to incorporate flow
2- Wire Decoder control systems incorporate flow
Controller inputs expand

OTHER HNOLOGIES

SHEDDING


AASIC

Is it a Flow sensor or a Flow meter? A sensor usually implies that it senses and tracks a physical property and produces a scalable output signal. A meter usually implies that it has a register or display Some devices can be both In the irrigation industry the terms are used interchangeably.

2019 NATIONAL CONFERENCE

Pick the Right tool for the job

Balance your Requirements carefully

Serviceability
 Reliability
 Support
 Cost
 Warranty

Ease of installation

- o Range of Measuremeno Friction Loss
- Pressure Rating
- o Accuracy
- o Repeatability
- o Suitability for service

AASIC

Is change a change for the better or just change? Materials of construction Electronics Detection principles

2019 NATIONAL CONFERENCE

AASIC

The Future?	
Will ultimately be decided by :	
Customer Demand	
Water Availability	
Regulatory Requirements	

2019 NATIONAL CONFERENCE

AASIC

Ronald Purdy

Badger Meter

Impeller Meters

Operation:

Force of moving water turns a multi-bladed wheel whose axis of rotation is perpendicular to the flow. Rotation is proportional to flow, mid-range; but, does follow the non-linear "S" curve common to all Turbine Type meters; At the extreme low limits due to bearing friction, and at the upper limits due to cavitation. Rotation can be detected by Magnetic, RF, Proximity, Mechanical or optical means.

Characteristics: Pipe Sizes ½-36+ Range 0.3 – 30 FPS Accuracy 1-3% (1 FPS+)

Advantages

- Rugged, Simple, Low Cost Design, with years of field experience
- Tolerates Particles in Flow Stream
- Low Head Loss
- Simple Two Wire Device, Compatible with most irrigation controllers

Disadvantages

A ASIC

- Limited Low Flow performance, sometimes requiring a meter run of smaller size pipe. **Best suited for**
- Main and lateral lines connected to Irrigation Controllers
- Flow input to Flow Monitoring, Control and Metering Devices.

2019 NATIONAL CONFERENCE

Electro-Magnetic Meter

Operation

Electric current pulsed to a coil produces a strong Magnetic field. Movement of Water generates a voltage proportional to flow. Sophisticated, micro-processor circuitry converts the voltage impulse to flow rate and total. Inline types are most common; but, some manufactures offer insertion types.

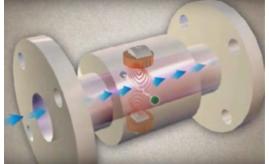
Characteristics: Pipe Sizes ¼ -36+ Range 0.1 – 40 FPS Accuracy 0.25% - 0.5%

Advantages

- No Moving Parts and unaffected by sand and other debris
- Very Low Head Loss Reduced Straight Pipe requirements
- High Accuracy with wide turn-down ratio, and good low flow performance.

Disadvantages

- Sensitive to Grounding, EMI, and Vibration
- Cost Weight Power Consumption.
- Not generally recommended for below grade locations.


Best suited for

• Pump Stations.

∆ ASIC

• Lower cost alternative to Compound meters where a wide range of flows is expected

Ultra-Sonic Flow Meters

Operation:

Two basic types (Transit Time and Doppler Shift)

Doppler Shift measures the change in frequency of an acoustic pulse, as it reflects off particles moving in the flow stream. (Think sound of Train Whistle) Not usually used in the Irrigation Market.

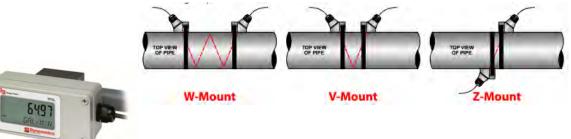
Transit Time measures change in time it takes for acoustic pulse to travel from one transducer to the other. The path may traverse the flow in a "W", "V", "Z" pattern, or be in-line, parallel to the flow. The time shift is extremely small and requires very precise timing, signal gain, and software algorithms to deal with all the subtle acoustical properties of the piping, fluid, and transducers.

Characteristics: Pipe Sizes ½" - 36+" Range 0.1 – 40 FPS Accuracy 1 % - 3%

Advantages/Disadvantages:


With so many types available, it is hard to make a general statement.

As a general rule, inline types are best with small pipes below grade, while external mounts are best used in larger pipes in protected areas. They can susceptible to EMI, and acoustical vibration, such as found in pump stations; but, generally have good low flow performance in most environments.


Best Suited for

A ASIC

Locations with wide ranging, or low flow rates. Selection Application Specific.

Disc Series Meters

Operation:

• Positive Displacement Disc is driven around a tight tolerance chamber.

Characteristics: Pipe Sizes ½" - 2" Range 0.2 – 15 FPS Accuracy 1.5% **Advantages**

- Low Cost
- Simple Design
- Positive Displacement Accuracy and Low Flow Performance

Disadvantages

- Small Pipe sizes only
- Clean Water Only
- Limited Signal Options
- Higher Head Loss

Best suited for

∆ ASIC

- Metering clean incoming City Water
- Small line sizes 2" and under, with low flows where accuracy in important

Turbine Meters

Operation:

Water turns a multi-bladed wheel whose axis of rotation is parallel with the flow. Rotation is proportional to flow, mid-range, but, does follow the non-linear "S" curve, common to all Turbine Type meters, at the extreme lower flow limits due to bearing friction, and at the upper flow limits due to cavitation. Rotation can be detected by Magnetic, RF, Proximity, Mechanical, or optical means.

Characteristics: Pipe Sizes 1.5" - 12" Range 0.25 – 30 FPS Accuracy 1.5% (above 0.4 FPS)

Advantages

- Wide Flow Range
- Good Accuracy
- Reduced Straight Pipe

Disadvantages

- Clean Water Only Requires inline filters
- Cost and Weight
- Limited Interface Options

Best Suited for

• Clean incoming city water where good accuracy is required with mid-range flows

▲ ASIC

Differential Pressure Flow Meters

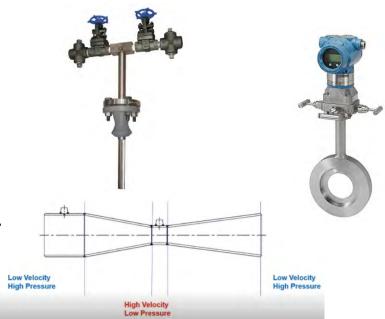
Operation:

Three basic types (Pitot Tube; Orifice Plate, Venturi)
Pitot Tube: A small protrusion into the flow stream.
Orifice Plate: Precise symmetrical constriction of the flow.
Venturi: Precise narrowing of the flow tube

The basic principle the same for all.

Non-linear pressure drop is induced, requiring square-root extraction to create a signal proportional to Flow.

Characteristics: Pipe Sizes $\frac{1}{4}$ " - 36+" Range 0.1 – 40 FPS Accuracy 0.5% - 1%


Advantages/Disadvantages:

Limited Turn-down ratio Cost – Probes inexpensive; however, Signal Conditioners tend to be expensive **Post Suited for**

Best Suited for

∆ ASIC

Sometimes still used for flow verification, but portable Ultra-Sonic meters more common today. Not often used in the Irrigation markets.

Vortex

Operation:

Although the shapes vary, a strut sometimes referred to as Bluff or Shredder Bar splits the flow stream causing vortexes to form. The frequency of these pressure waves are proportional to flow, detected as they pass transducers located close downstream. Although the principle is simple, these meters tend to be quite expensive due the sophisticated circuitry and micro-processor design required to separate signal from noise and deal with the differences' in flow mediums.

Characteristics: Pipe Sizes 1/4'' - 24+'' Range 1.3 - 30+ FPS Accuracy 0.5 - 1%

Advantages

- Low Head Loss
- No Moving Parts

Disadvantages

- Poor low flow performance and for Clean Water Only
- Cost

∆ ASIC

Limited Interface Options

Best Suited for

Not usually used in the Irrigation Markets

FLOW Transducer

Transmitting

Summary & Questions

Characteristics	Impeller	Electro-Magnetic	Ultrasonic	Disc	Turbine	Differential Pressure	Vortex
Pipe Size	1/2" - 36+"	1/4" - 36+"	1/2" - 36+"	1⁄2″ - 2″	1.5" - 12"	1⁄4″ - 36+″	1/4" – 24+"
Range	0.3 - 30 FPS	0.1 - 40 FPS	0.1 - 40 FPS	0.2 – 15 FPS	0.25 – 30 FPS	0.1 – 40 FPS	1.3 – 30+ FPS
Accuracy	1 - 3% (Above 1 FPS)	0.25% - 0.50%	1 - 3% (Design Dependent)	1.50%	1.5% (above 0.4 FPS)	0.5% - 1%	0.5 - 1%
Technology	Simple	High Tech	High Tech	Simple	Simple	Mixed	High tech
Troubleshooting	Simple	Involved	Involved	Simple	Simple	Mixed	Mixed
NFS -Potable Approved	Mixed	Usually	Mixed	Usually built to AWWA Standards	Usually built to AWWA Standards	Mixed	Mixed
Suspended Solids	Tolerant	Toterant	Tolerant	Internal Screen	Requires Screen	Mixed	No
Wet -Below Grade	Yes	Usually Not Recommended	Inline OK Clamp-On Not Recommended	Yes	Yes	Yes	Mixed
Head Loss	Low	Very Low	Mixed	High	High	Medium	Low
EMI Tolerance	Good	Suceptable	Suceptable	Good	Good	Good	Susceptible
Cost	Low	High	Mixed	Low	High	Mixed	High
Power Requirement	From Controller	Line or Battery	Line or Battery	Mixed	Mixed	Mixed	Line
Weight	Light	Inline Heavy	Light	Medium	Heavy	Mixed	Mixed

Where used

City Water	Irrigation	Potable/Irrigation	Varies with Materials & Design	Potable/Irrigation	Potable/Irrigation	Varies with Materials & Design	Varies with Materials & Design
Pump Stations	Yes	Check for Grounding and EMI	Check for Acoustic & EMI	Small Pump Ok But Usually Not	Could be But Usually Not	Could be But Usually Not	Could be But Usually Not
Irrigation Controllers	Yes	Usually Not	Varies with Design	Yes	Usually Not	No	No
Flow Monitoring	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Flow Totalizing	Yes	Yes	Yes	Yes	Yes	Yes	Yes

∆ ASIC

Jim Peterson

Great Plains Industries

How do we know what the future holds?

- No way to know exactly
- Ask your customers what they are looking for
 - OEMs

∆ ASIC

- Distributors
- Consultants
- Irrigation Managers

What did they tell us?

- Easier Installation
- Eliminate the wire-path
- Lower the cost of the device
- More robust hardware
- Better Accuracy

Easier Installation

- Device that doesn't require cutting into the pipe
- Reduced installation labor
- Clamp on Ultratrasonic
- retrofit applications

∆ ASIC

Eliminate the wire-path

- Continued advancement of wireless data transmission to the controller
- Affordably priced
- Reliable and Repeatable
- Retrofit applications

A ASIC

Lower the device cost

• This allows for more systems to add flow measurement

• Smaller commercial systems

• Residential system

∆ ASIC

Better Accuracy

• Flow sensor could also be a deduct meter

• Baseline to accurately measure the effects of water conservation

measures

A ASIC

- Ability to tie into data analytics systems like IBM Watson
 - Allows for predicative anticipation of system problems

Questions & Discussion

The Future of Revit® in Irrigation

Moderated by: Lance Sweeney

BIM (Building Information Modeling)

- 3D model based design process
- Revit® Autodesk BIM software
- Very Useful for Architects, MEP Engineers, etc.
- Data stored in "families" is very useful
- Not intended for landscape and irrigation design

2019 NATIONAL CONFERENCE

Revit® Challenges

- Revit \$2,079 / year license (based on 3 year subscription)
- Difficult program to master compared to AutoCAD
- Irrigation is not designed in 3D (complicated and unnecessary)
- Irrigation piping and most equipment is diagrammatic
- Level of detail can be much higher than necessary or practical
- Installation of system likely will vary from plans
- Use of AutoCAD from Revit based files has challenges
- Development of equipment "families"

A ASIC

Revit Experiences

- Consultants who design in Revit
- Consultants who design in AutoCAD from Revit exported files
- Consultants who have used Revit consultants to convert 2D drawings into Revit
- Pressure from Landscape Architects to adopt Revit

2019 NATIONAL CONFERENCE

Future of Revit in Irrigation

- Consultants looking to learn Revit?
- Should use of Revit be limited to within building shell?
- Should Revit use for irrigation be limited to piping or internal building installed equipment?
- What are irrigation manufacturers doing to assist?

2019 NATIONAL CONFERENCE

ASIC Response to Revit

- Develop reasonable guidelines for use?
- Work with ASLA to define and mitigate Revit issues?
- Approach AutoDesk about future LIM (Landscape Information Modeling) development?
- Assist in sourcing irrigation specific training for members?

2019 NATIONAL CONFERENCE

Thank you!