

#### CONNECTING THE BUILT AND NATURAL ENVIRONMENT

▲ ASIC | 2015 | MINNEAPOLIS | MINNESOTA

### Irrigation Codes and Standards and How They Impact You





**CLICK HERE TO INSERT** 

### Brent Mecham, Brian Vinchesi



### **Market Transformation**



## Irrigation **BMPs**

Collaboration between ASIC & IA

**BMP & Practice Guidelines** 

- Design
- Installation
- Management
- Appendices
- Inspection &
   Commissioning
- Water Budgeting
- Scheduling



#### ASABE/ICC 802-2014

Landscape Irrigation Sprinkler and Emitter Standard

American National Standard



ASABE/ICC 802—2014 Landscape Irrigation Sprinkler and Emitter Standard

Definitions Tests—Sprinklers & Bubblers Flow Rate **Distance of Throw Distribution Uniformity Burst Pressure Check Valve Pressure Regulation** 

ASABE/ICC 802—2014 Landscape Irrigation Sprinkler and Emitter Standard

Tests—Emitters and Microsprays Uniformity of flow rate Flow rate as a function of pressure Emitter exponent for PC emission devices Check valve function



### Standardized Procedure for Determining Landscape Plant Water Demands



## Annual Average Fraction of $ET_0$

| Plant Type                                                                  | Plant Factor |
|-----------------------------------------------------------------------------|--------------|
| Turf – Cool Season                                                          | 0.8          |
| Turf – Warm Season                                                          | 0.6          |
| Annual Flowers                                                              | 0.8          |
| Woody plants, herbaceous perennials—<br>Wet* (> 20 inches of precipitation) | 0.7          |
| Woody plants, herbaceous perennials—<br>Dry*                                | 0.5          |
| Desert plants (< 10 inches of precipitation)                                | 0.3          |

### ASABE X626

- Measuring Irrigation Performance
  - Catch Can Tests
  - Drip Evaluation
  - Soil Moisture Tests
- Commissioning

### ASABE X633 and X627

- Soil Moisture Sensors
  - Sensor Only
  - Beta Testing
- Environmentally Responsive Controllers
  - Weather Based Only

### SWAT vs. EPA WaterSense Labeling

- If you have one should you get the other?
  - How?

# Green Codes

### **Green Codes**

- Supplement or overlay other building codes and enforceable
- "Greener" way of building
  - Energy efficiency
  - Water efficiency
  - Indoor environment
- Go outside of the building envelope
  - Site requirements
  - Landscape & irrigation requirements

### ASHRAE 189.1

- ASHRAE 189.1-2014 Standard for the Design of High-Performance Green Buildings
  - 40% turf limitation in the water efficiency section
  - Irrigation provisions
    - Hydrozoning
    - Controllers—SWAT posted 80% / 10%
    - 33% of landscape can use potable water or
    - 35% of total landscape water can be potable or municipally reclaimed water

- 70% ET<sub>o</sub> for turf, 55% ET<sub>o</sub> for plantings

– Meters > 25,000 s.f. or 1000 gal/day (potable)

### lgCC-2015

- Reduce potable water use by 50%
   Unless allowed by AHJ
- Design and installation by accredited or certified professional
- Controller regulates based on weather or soil moisture
- Rain sensor
- Hydrozoning
- Pressure regulation for drip is 40 psi or less

### lgCC-2015

- Sprinklers shall:
  - MPR
  - Prohibited in area less than 4 feet
  - Prohibited on slopes greater than 25%
    - Except if PR is less than 0.50 in./h
  - Sprinklers on turfgrass only
  - 4 inch pop up minimum
  - DU<sub>Iq</sub> not less than 0.65

### lgCC-2015

- Alternate water sources
- Rainwater systems no limit on method
- Graywater systems subsurface only and storage maximum 24 hours
- Signage & equipment marking requirements
- Water quality testing requirements
- Metering potable and nonpotable water required if there is a controller

### LEED v4

- Understanding that what they say is not the same as what they mean.
- Water really means potable water.
- Maximum points for harvesting water for irrigation.

### News brief

- ASHRAE 189.1, IgCC, LEED, AIA are merging efforts.
- Minimize duplication and overlap.
- LEED picks up where the standard ends.

# IAPMO Green Technical Supplement

### Green Supplement-2012

- Backflow for potable and reclaimed
- Designed to use minimum 75% of alternate water for annual demand.
- Control system
  - WBIC or SMS
  - Rainfall and soil moisture suspension
  - Cycle & Soak
  - Post irrigation controller settings
    - PR
    - Plant factors
    - Sensor settings
    - Peak demand schedule

### Green Supplement-2012

- Low Flow Irrigation
  - Pressure regulation appropriate for emission devices
  - Required for vegetation over 12 inches in height
- No runoff out of zone
- No low-head drainage
- No off target application
- Prohibited on narrow areas less than 4 feet
- Sloped areas maximum 0.75 PR

### Green Supplement-2012

- Sprinklers-low precipitation rate
- Sprinklers have MPR
- Sprinklers shall have pressure regulation

   At the valve or the sprinkler
- Sprinklers shall pop up at least 4 inches
- Sprinklers shall not exceed 1 in./h
- Catch can test (6 cans for 15 minutes)
- Competent designers and contractors shall be certified to perform the work

### 2015 additional provisions

- Dedicated meter for landscapes > 1,500 s.f. with controller (2,500 s.f. w/o controller)
- Meter for vegetated roofs > 300 s.f.
- Maximum velocity for irrigation is 5 fps in plastic pipes, 7.5 fps in metal pipes
- Master valve for continuously pressurized alternate water sources
- Identification when using alternate water on conversions. New areas use purple pipe.

### 2015 additional provisions

- Sensors to inhibit irrigation when raining or freezing conditions.
- Controls follow WaterSense specifications
- Sprinklers and Emitters comply with ASABE/ICC 802-2014 standard

### 2015 additional provisions

- Exception to runoff / off target application is allowed for paved walkways, paths, etc. that are outside of public right of way. Water stays within hydrozone.
- Outside hose bibs shall be allowed on irrigation pipe downstream of PBD with signage.
- Pipe bury
  - > 10,000 s.f., 18 in. for main line, 12 in. for laterals
  - < 10,000 s.f., 12 in. for main line, 8 inches for laterals</p>
  - Vehicle surfaces in sleeve minimum 24 inches deep

### News

- IAPMO GTS 2015 will be last version
  - Creating a standard about water use efficiency instead of code for easier adoption.
  - WE-Stand 2017 ANS for Water Efficiency
- Green Building Initiative
   Working on updating the 2010 standard
- National Green Building Standard
  - Updating for 2015

### **Alternate Water Sources**

- Rainwater Harvesting Standard
   ASPE/ARCSA 63
- Stormwater Harvesting Standard

- ASPE/ARCSA 78

## Commissioning

- ICC 1000-201X Standard for Commissioning
- 1<sup>st</sup> draft out for public comment
- Commission Providers/Specialist –certified
- Commissioning plan
- Testing & Evaluating
- Documentation, i.e. operators manual
- Report
- 3<sup>rd</sup> Party Vendor

### EPA WaterSense

- Pending
  - NOI Pressure Regulating Sprinklers
  - NOI Soil Moisture Sensors



#### CONNECTING THE BUILT AND NATURAL ENVIRONMENT

▲ ASIC | 2015 | MINNEAPOLIS | MINNESOTA

### A New Way to Measure, Calculate and Use Irrigation Efficiency





### A New Way to Measure, Calculate and Use Irrigation Efficiency

David Zoldoske,

Center for Irrigation Technology Brent Mecham, Irrigation Association

#### 

#### Key Terms

- Coverage
- Distribution Uniformity
- Overspray losses
- Percolation losses
- Sprinkler Operation Efficiency
- Irrigation Efficiency







## **Distribution Uniformity**


### Overspray



# Runoff



# Percolation



# **Keeping Water on Target**



# Simple



# Simple









# Difficult



# Spray nozzle



# **MSMT** Rotary Nozzles



# Multiple nozzle performance



# Multiple nozzle performance



# **SWAT Testing Protocol**

- Spray Head Nozzles Performance Characteristics 3.2
  - Individual nozzles and groups of nozzles
  - Spacing configurations
  - Operating pressures
  - Repeatability
  - $-DU_{Iq}$
  - Sprinkler operational efficiency
- Finalized April, 2015—ready for testing

# **Testing configurations**





# **Testing Area**





# Pressure is set to manufacturer recommendations

20



HILLIN

10

60

SPAN

# Testing

- Consider:
  - Operating pressure
  - $-DU_{lq}$
  - Overspray
  - Percolation (excess)
  - Median and Effective application rate
  - Sprinkler Operating Efficiency



 $DU_{lg}$ =.40 OS=0.1% PL=42.7% OE<sub>s</sub>= 57.2%



DU<sub>lg</sub>=.83 OS=1.5% PL=10.4% OE<sub>s</sub>= 88.3%





# **Results-Spray**

| Nozzle | Shape | psi | <b>PR</b> <sub>median</sub> | <b>PR</b> <sub>effect</sub> | OS % | PL % | OE <sub>s</sub> % | DU <sub>lq</sub> |
|--------|-------|-----|-----------------------------|-----------------------------|------|------|-------------------|------------------|
| S      |       | 20  | 0.82                        | 0.63                        | 3.6  | 26.9 | 70.5              | .62              |
| S      |       | 30  | 0.94                        | 0.79                        | 3.8  | 18.7 | 78.2              | .71              |
| S      |       | 45  | 1.31                        | 1.02                        | 2.1  | 22.4 | 76.0              | .60              |
|        |       |     |                             |                             |      |      |                   |                  |
| S      |       | 20  | 0.85                        | 0.63                        | 8.6  | 30.4 | 63.6              | .64              |
| S      |       | 30  | 1.03                        | 0.76                        | 8.4  | 27.4 | 66.5              | .68              |
| S      |       | 45  | 1.24                        | 0.98                        | 8.6  | 23.5 | 69.9              | .71              |

Same nozzle and spacing, different operating pressures

# **Results-MSMT**

| Nozzle | Shape | psi | <b>PR</b> <sub>median</sub> | <b>PR</b> <sub>effect</sub> | OS % | PL % | OE <sub>s</sub> % | DU <sub>lq</sub> |
|--------|-------|-----|-----------------------------|-----------------------------|------|------|-------------------|------------------|
| R-1    |       | 40  | 0.46                        | 0.39                        | 1.1  | 19.1 | 80.0              | .66              |
| R-2    |       | 40  | 0.60                        | 0.54                        | 1.5  | 10.4 | 88.3              | .83              |
| R-3    |       | 45  | 1.04                        | 0.70                        | 0.1  | 57.4 | 42.5              | .40              |
|        |       |     |                             |                             |      |      |                   |                  |
| R-1    |       | 40  | 0.48                        | 0.37                        | 1.8  | 27.0 | 71.7              | .51              |
| R-2    |       | 40  | 0.65                        | 0.57                        | 6.8  | 15.3 | 78.9              | .49              |
| R-3    |       | 45  | 1.35                        | 0.88                        | 6.0  | 36.6 | 59.6              | .53              |

Rotating multi-stream, multi-trajectory nozzles

#### In 2014 CIT was asked to develop a protocol useful in administering sprinkler rebate programs

- The protocol would be administered by thirdparty testing agencies to:
  - Pre-qualify turf sprinklers for rebate programs
  - Establish current "state-of-the-art"
  - Provide incentives for ongoing improvements
  - Unfortunately no test protocol existed that calculated sprinkler application efficiency

# Current sprinkler test method:

- NOT consistent with operational conditions
- Single head tested
- Computer simulation using multiple heads
- Makes no allowances for jet mechanical interference

Full scale irrigation set-up in CIT sprinkler test laboratory to evaluate performance

- Sprinkler heads operated simultaneously
- Sprinkler heads operated individually
- Application efficiency calculated for each

#### Irrigation Design/Operation Test Setup



Center for Irrigation Technology

# Phenomena of Jet Interference = DU: 59.8



### Non Interference = DU: 87.1



Technology

### Test

- Tests conducted by CIT
- Defined shape and spacing
- Manufacturers supply the nozzle best suited to the situation.

$$Pattern \ Loss = \frac{\sum_{1}^{75} (x - x_i)}{100 \ (\bar{x})}$$

Where  $x_i$  = app rate at 75% of area  $\overline{x}$  = average application rate



Technology

# **Results**—Square

| Nozzle | Shape | psi | <b>PR</b> <sub>median</sub> | <b>PR</b> <sub>effect</sub> | OS % | PL % | OE <sub>s</sub> % | DU <sub>lq</sub> |
|--------|-------|-----|-----------------------------|-----------------------------|------|------|-------------------|------------------|
| #1     |       | 30  | 1.62                        | 1.38                        | 1.0  | 20.1 | 79.1              | .74              |
| #2     |       | 30  | 1.61                        | 1.40                        | 0.1  | 19.3 | 80.6              | .74              |
| #3     |       | 40  | 0.61                        | 0.56                        | 6.2  | 12.7 | 81.9              | .79              |
| #4     |       | 30  | 1.63                        | 1.28                        | 2.0  | 25.4 | 73.1              | .63              |
| #5     |       | 30  | 1.25                        | 1.09                        | 0.9  | 21.2 | 78.1              | .65              |
| Avg    |       |     |                             |                             | 2.0  | 19.7 | 78.6              | .71              |

Manufacturers recommended and supplied the nozzle to irrigate a square shape that is 30 ft. x 30 ft. in size.

# Results—Circular

| Nozzle | Shape | psi | <b>PR</b> <sub>median</sub> | <b>PR</b> <sub>effect</sub> | OS % | PL % | S <sub>OE</sub> % | DU <sub>lq</sub> |
|--------|-------|-----|-----------------------------|-----------------------------|------|------|-------------------|------------------|
| #1     |       | 30  | 1.75                        | 1.47                        | 7.0  | 24.2 | 70.5              | .63              |
| #2     |       | 30  | 1.86                        | 1.40                        | 0.2  | 33.6 | 66.3              | .29              |
| #3     |       | 40  | 0.64                        | 0.49                        | 6.0  | 27.6 | 67.9              | .41              |
| #4     |       | 30  | 0.90                        | 0.73                        | 1.1  | 30.8 | 68.4              | .55              |
| #5     |       | 30  | 1.82                        | 1.45                        | 10.0 | 23.6 | 68.7              | 64               |
| Avg    |       |     | 0.65                        | 0.57                        | 4.9  | 28.0 | 68.4              | .50              |

Manufacturers recommended and supplied the nozzle to irrigate a circular shape that is 30 feet in diameter.

#### Comparison—same nozzle

| Nozzle | Shape | psi | <b>PR</b> <sub>median</sub> | <b>PR</b> <sub>effect</sub> | OS % | PL % | S <sub>OE</sub> % | DU <sub>lq</sub> |
|--------|-------|-----|-----------------------------|-----------------------------|------|------|-------------------|------------------|
| #1-a   |       | 30  | 1.62                        | 1.38                        | 1.0  | 20.1 | 79.1              | .74              |
|        |       |     |                             |                             |      |      |                   |                  |
| #1-b   |       | 30  | 1.75                        | 1.47                        | 7.0  | 24.2 | 70.5              | .63              |
|        |       |     |                             |                             |      |      |                   |                  |
| #1-c   |       | 30  | 1.86                        | 1.40                        | 0.2  | 33.6 | 66.3              | .29              |
|        |       |     |                             |                             |      |      |                   |                  |

Same nozzle. Test #1-c is "fine-tuning" after test #1-b

#### Study at Cal Poly-Pomona

- Distribution Uniformity of Multi-Stream, Multi-Trajectory Rotary Nozzles Spaced Below Recommended Distance
  - Kumar, Green, Vis



# Study: RMSMT nozzles

- Maximum spacing HTH
- Spacing reduced 10%, nozzle unadjusted
- Spacing reduced 25%, nozzle unadjusted
- Spacing reduced 10%, nozzle adjusted
- Spacing reduced 25%, nozzle adjusted

10% = common design practice25% = common maximum radius adjust
## Study Results--DU<sub>Iq</sub>

| Treatment    | Nozzle A | Nozzle B | Nozzle C | Overall |
|--------------|----------|----------|----------|---------|
| Max HTH      | .58      | .58      | .45      | .54     |
| -10% unadj.  | .64      | .65      | .57      | .62     |
| -25% unadj.  | .59      | .78      | .62      | .66     |
| -10% adjust. | .81      | .76      | .52      | .70     |
| -25% adjust. | .75      | .74      | .67      | .72     |
|              |          |          |          |         |
| Overall      | .68      | .71      | .56      | .65     |

Average of four replications

Unadjusted = over spraying target area

## **Questions**?

#### Thank You !

#### Conclusions

- Curvilinear shapes are more difficult to irrigate efficiently.
- DU is one metric—focus is on "dry"
- Sprinkler operation efficiency considers where is the water going.
- MSMT nozzles create less interference of pattern.
- Keeping water on target is more important than highest DU.

#### Recommendations

- Reduce catalog info by 10-15%
- Adjust nozzle to keep water on target
- Shoot for highest DU possible
- Use the real application rate for scheduling
- Limit extra run time to no more than 20%
- If there are persistent dry areas—fix the sprinklers, or check for other causes
- Install sprinklers expertly
  - Spacing, correct nozzle, aligned, plumb, etc.



#### CONNECTING THE BUILT AND NATURAL ENVIRONMENT

▲ ASIC | 2015 | MINNEAPOLIS | MINNESOTA

#### Creating Efficiency in Design Using Hydraulic Modeling

Joel Johnson, Bentley Systems, Inc.



#### 

#### **Presentation Overview**

- Introduction
- Basics of Hydraulics
- Available Modeling Tools
- Workshop
  - Construction of a Hydraulic Model
  - How to Use Model Results





### Hydraulic Modeling Survey

What is the "black box" behind a hydraulic model?

- One of those nomograph chart things that you draw lines on to size pipes
- A series of spreadsheet calculations using engineering formulas
- A complex algorithm that simultaneously solves for the water pressure and flow in a pipe network



## Survey (continued)



The last time I used hydraulic modeling was:

- Um... Never?
- I remember a course back in college...
- We had a big project once, so we used hydraulic modeling software
- I use it on most, if not all, pressure system designs





#### Hydologic vs. Hydraulic Modeling Basics of Hydraulics

## **Types of Modeling**



CONNECTING THE BUILT NATURAL ENVIRONMENT

#### <u>Hydrologic Modeling:</u> Rainfall, Runoff



#### <u>Hydraulic Modeling:</u> Pipes, Channels, Engineered Systems



### **Types of Modeling**



# <u>Gravity Flow Systems</u>: Ditches, Channels, and Pipes that are not flowing at full depth

stormwater conveyance, gravity sewers

<u>Pressurized Flow Systems</u>: Pipes are flowing full, interaction with pumps, storage, and discharge under pressure

water distribution, fire protection, sprinklers

#### **Pressure System Hydraulics**



 Pressure measured at any point in a volume of water is caused by the weight of the liquid above that point



#### Hydraulics in a Pipe



CONNECTING THE BUILT NATURAL ENVIRONMENT

 In a pressure system the water is enclosed within pipes



• The water surface is now in the tank therefore the pressure is measured vertically to this point

#### **Pumped Systems**



 If the stored water is lower than the delivery point, you must design a pump to achieve the desired pressure



 Design pressure of 60 psi ~ 150 feet: pump must add this in addition to any elevation change (total head)

## Hydraulic Grade Line (HGL)



• What is total head (HGL) ?



Datum

- It is the pressure you would measure if you were at sea level
- Therefore total head or HGL = Elevation + Pressure

#### Hydraulic Model Computations



- Hydraulic models work in total head (HGL)
- Pressures are defined by subtracting the elevation from the total head (HGL):

Pressure = HGL – Elevation

- It takes energy to transport water along a pipeline This energy is taken from the water's potential energy (HGL)
- So as you travel away from the water source the HGL reduces
  - This reduction/loss of HGL is known as HEAD LOSS





 HEAD LOSS is calculated as the difference in the HGL from one end of a pipe to the other



HEAD LOSS = Upstream HGL – Downstream HGL

#### Head Loss in Piping Systems



NATURAL ENVIRONMENT

• What causes Head Loss in a pipe?





### Hydraulics



NATURAL ENVIRONMEN

 What is the relationship of Length, Roughness, Flow and Diameter to Head Loss?

Hazen Williams: 
$$h = \frac{KL}{D^{4.87}} \left(\frac{Q}{C}\right)^{1.85}$$

Darcy Weisbach:  $h = \frac{KLfQ^2}{D^5}$ 

- Headloss  $\infty$  Length
- Headloss  $\propto$  f(Roughness)
- Headloss  $\propto \rm Flow^2$
- Headloss  $\propto$  1 / Diameter  $^5$
- Therefore, changing <u>Diameter</u> has the greatest impact on Head Loss

#### **Other Losses**



- What else in the piping system can cause Head Loss?
  - Meters, sensors, or other measurement devices
  - Valves
  - Backflow preventers
  - Filters
  - Reducers
  - Bends and fittings





#### Modeling Software and Process

## Why Model?



Hydraulic modeling can help:

- Determine the expected pressure distribution in a system
- Evaluate storage capacity/needs and volume supplied
- Evaluate parallel/concurrent operation of systems
- Determine appropriate pipe size
- Evaluate operation schedules and determine constraints
- Evaluate pumping needs and efficiency

## What Tools Are Available?



#### Public Domain Software

- EPANET (http://www.epa.gov/nrmrl/wswrd/dw/epanet.html)
  - Advantages: Free! Widely used, minimal footprint on computer, relatively easy to use, access to source code
  - Disadvantages: No support, no upgrades, limited interface, no interaction with mapping or CAD software

#### Commercially Available Software

- Advantages: technical support, continued upgrade and development, advanced analytical features, can integrate with GIS and/or CAD platforms
- Disadvantages: Cost (compared to EPANET), multiple vendors

#### "Workshop"



- Use GIS base map to set up simple golf course model
- System Components:
  - Water source / storage (pond at constant level)
  - Pump station (1 pump)
  - Pipes (2" to 6")
  - Sprinkler heads
- Design flow rate use rotor sprinkler head with 60' coverage radius, 30 gpm flow rate

### **Model Construction**



- In EPANET, place junctions at sprinkler locations
- May be helpful to have CAD alongside, use northing and easting and input manually
- CAD or GIS embedded can overlap on basemap and place using strategic symbol size

| Junction 5        |         |   |
|-------------------|---------|---|
| Property          | Value   |   |
| *Junction ID      | 3       | Δ |
| X-Coordinate      | 315.96  |   |
| Y-Coordinate      | 5509.98 |   |
| Description       |         |   |
| Tag               |         |   |
| *Elevation        | 0       |   |
| Base Demand       | 0       |   |
| Demand Pattern    |         |   |
| Domand Catagorian | 4       | Ŧ |

EPANET: Place junctions and edit coordinates

Get coordinates from GIS or CAD or use background file in embedded modeling platform



### System Layout



"Connect the Dots"

 create pipes by
 literally connecting
 sprinklers.

- Use uniform size at first, can adjust later based on analysis results
- Establish source and pump as necessary









#### **Elevation Data**



- Utilize ground surface data
  - Generally available through State/University sites
- Commercial programs have extraction utilities to extract elevations at nodes
- Include elevation and relevant volume of any storage features – these can be set as constant head or as varying level (requires level/storage capacity relationship)

### **Initial Settings**



- Use one-point pump definition, unrealistically large for pipe sizing
  - Design Flow @ maximum with all sprinklers running
  - Head @ 60-80 psi on discharge side
- "Demands" = sprinkler output
  - Initially set all sprinklers on
- Pipe size:
  - Start with network at one size
  - Work from source to extremes, increase pipe size when head loss is extreme



#### Pipe Size Adjustment



CONNECTING THE BUILT



### **Final Adjustments**



- Add other "loss" items
  - Valves (define minor loss coefficient)
  - Filters
  - Backflow prevention
  - Bends/fittings
  - Etc.
- Readjust pipe or pump size if not meeting pressure at extremes

#### 📀 EPANET 2 - GolfCourse.inp

File Edit View Project Report Window Help

#### D 🖆 🖬 🔮 🐚 🗙 🗰 🥰 🌠 🖩 📽 🚺 💽 🗠 ⊕ 🤇 🔄 🖯 🛏 ┌ 🖂 T



#### Make it Real



- Activate sprinklers in realistic operation and eliminate "demands" for sprinklers that are off
  - Valve closure shouldn't matter modeling at steady state so if there is no flow, there is no head loss
- Size the pumps based on realistic flow vs. head
- Replace one-point pump curve with defined pump curve from vendor literature
## What Else Can I Do?



- Use "Extended period simulation" (EPS) modeling to define daily watering pattern
  - Cumulative flow to define volume of water applied
  - Iteratively check how you can or can't concurrently run areas of the system
  - Evaluate use from storage, necessary daily water purchase

## What Else Can I Do?



- Pressure Dependent Demands
  - Sprinklers flow at rate dependent upon system pressure
  - Render results with symbol sizes to show coverage
- Automated cost/benefit optimization of pipe sizes

## In Summary



- Hydraulic modeling can help:
  - Layout of system/coverage area
  - Size pipes
  - Design necessary pumping
  - Evaluate potential operational schemes
  - Show effects of operational schemes on storage/source water as well as effective coverage
  - Understand the flexibility and limitations of the designed system

**▲** ASIC

### THANK YOU!



Joel.Johnson@Bentley.com





#### CONNECTING THE BUILT AND NATURAL ENVIRONMENT

▲ ASIC | 2015 | MINNEAPOLIS | MINNESOTA

# GATE VALVES









NRS Gate Valve



OS&Y Gate Valve







#### ▲ ASIC

## Slide 30 WEDGE TYPE GATE VALVES



Solid Wedge



Resiliant wedge

## AWWA Torque Requirements

RESILIENT-SEATED GATE VALVES FOR WATER SUPPLY SERVICE 9

| Nominal Valve Size or NPS |           | Design Torque        |       |
|---------------------------|-----------|----------------------|-------|
| in.                       | (mm)      | ft-lb                | (Nm)  |
| 3-4                       | (75–100)  | 200                  | (270) |
| 6–16                      | (150-400) | 300                  | (406) |
| arger than 16             | (400)     | Consult manufacturer |       |



